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ABSTRACT

This work describes the development and testing of a personal navigation system (PNS)
for use during normal walking on level ground surfaces. A shoe-worn miniature
inertial/magnetic measurement unit (IMMU), which is comprised of accelerometers,
magnetometers, and angular rate sensors, provides the measurement data for the PNS
algorithm. The well-known strapdown navigation algorithm is adapted for use in the
PNS, which further incorporates the error correction technique commonly referred to as
zero-velocity updates. A gait-phase detection algorithm estimates instances of foot
stance and swing and establishes the appropriate times to apply the velocity error
correction technique within the PNS algorithm.

A main contribution of the work described herein pertains to the design and
analysis of a quaternion-based complementary filter for estimation of three-dimensional
attitude of the IMMU. This complementary filter algorithm builds on an earlier three-
dimensional attitude estimator known as the Factored Quaternion Algorithm (FQA). The
complementary filter is further tailored for the PNS application through the use of an
adaptive gain switching strategy based on knowledge of the gait phase.

A novel and incidental effort described here pertains to the design and
implementation of a locomotion interface for a virtual environment using the shoe-worn
IMMU. In this application, one IMMU is worn on each foot. A set of foot gestures was
conceived and a custom software program was developed to decode the user’s foot
motions. This unique interface gives the user freedom to navigate through a virtual
environment in any direction he/she chooses for those applications utilizing large-screen

displays.
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EXECUTIVE SUMMARY

The art of navigation has existed in many forms for thousands of years. Early travelers
used terrestrial waypoints and celestial bodies to explore vast distances. In modern times,
the Global Positioning System, or GPS, has come to the forefront as one of the primary
methods for navigation. Undoubtedly, GPS may be regarded as one of the most
significant developments of the 20th century. Originally conceived and developed by the
Department of Defense, GPS has been successfully integrated into navigation systems
installed within aircraft, ships, submarines, and weapons of various types. It has also
found many civilian applications, including a number of consumer products, such as
cellular phones, automobiles, and personal navigation. In the latter, this term is meant to
describe the tracking of one’s position while the user moves about under his/her own
locomotion (walking, running).

In spite of the many successful applications of GPS in land, sea, and air, the
navigational aid has some considerations that limit its use. One of these deals with the
reception of the essential signals from the system’s orbiting satellites. Since it is
necessary to receive signals from at least four GPS satellites to calculate position fixes,
GPS-based positioning may not be possible at some locations. It has been widely
established that places such as dense urban environments, valleys and canyons, and
heavily forested regions suffer from occlusion problems. The GPS signal also is
attenuated as it propagates through the exterior walls of building structures to the point
that indoor navigation becomes difficult. Hostile or inadvertent radio-frequency jamming
could also deny the user the proper reception of these essential GPS signals.

This work deals specifically with the development of a personal navigation
system (PNS) for tracking one’s position. It seeks to address the limitations of GPS for
personal navigation through the use of inertial and magnetic measurements. Low cost,
light weight, and low power devices, such as accelerometers, angular rate sensors, and
magnetometers, have been integrated into commercially-available miniature modules.
These inertial magnetic measurement units (IMMU), however, come with some

disadvantages that limit their performance—namely, a significant amount of random
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error (noise), which, in turn, affects their overall accuracy. Therefore, additional
techniques and methods must be developed to expand the breadth of their utility.

With regard to the PNS application, which is to be presented within the body of
this work, a navigation algorithm is developed. It requires that the IMMU be attached to
the user’s foot to provide measurements during normal walking motion. The algorithm is
adapted from the familiar strapdown navigation algorithm and integrates the error-
correction technique known as zero-velocity updates. This work also presents a gait-
phase detection algorithm for identifying the two primary phases of the human walking
cycle: the swing phase and the stance phase. The operation of the PNS algorithm
requires knowledge of the walking state at any given time.

To determine the foot attitude during each iteration of the navigation algorithm, a
quaternion-based complementary filter is introduced. It builds upon the Factored
Quaternion Algorithm (FQA), which was developed previously at the Naval Postgraduate
School, to yield a more robust method for computing attitude in instances where there are
abrupt changes in body dynamics. A gain-switching scheme is further developed for the
complementary filter that is shown to give better performance than a constant-gain
version of the same filter. Testing of the attitude filter is accomplished by simulation and
through the use of an instrumented pendulum built in the laboratory.

The resulting PNS algorithm is composed of the parts introduced in the previous
paragraphs. That is, it integrates the strapdown navigation algorithm with the zero-
velocity updates, the gait-phase detection algorithm, and the quaternion-based
complementary filter with the adaptive gain-switching strategy. Performance of the PNS
is examined by simulation and by the use of real data collected during walks around an
athletic track, and demonstrates the viability of the PNS in some GPS-denied situations.
Some limitations are noted here, such as, the PNS is only demonstrated for normal
walking over level developed walking surfaces. Other types of locomotion (running or
crawling, for example) were either not considered or shown to be incompatible with the
PNS algorithm in its present form. PNS performance was also limited by magnetometer

accuracy, which was easily influenced by sources of hard- and soft-iron interference.
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As an incidental by-product of this effort, a novel utilization for the IMMU was
also developed: a locomotion interface for a virtual environment. As in the PNS
application, it used the shoe-worn IMMU. In this application, however, two IMMUSs are
required, one on each foot. A set of foot gestures was conceived and a custom software
program was developed to decode the user’s foot motions. This unigue interface gave the
user freedom to navigate through a virtual environment in any direction he/she chose for

those applications utilizing large-screen displays.
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l. INTRODUCTION

A. EARLY AND PRESENT-DAY NAVIGATION

Early travelers and explorers recognized the need to track one’s position as they
voyaged across distant lands and oceans. The technique employed at the time is, as the
saying goes, “as old as the hills.” Ancient cultures were resourceful and used landmarks,
such as mountains, canyons, rivers, and other significant topographical features, to
determine their position as they journeyed from one place to another. Ancient travelers
were also skilled in the art of celestial navigation. It is believed that Phoenician seafarers
as early as 600 BC determined their position in the open water from observations of
heavenly bodies [1]. In the Pacific, Polynesians traveled across great ocean distances in
400 AD by observing the position of the sun, moon, and stars to ensure safe voyages to
distant islands [2]. To sail across the Atlantic, explorers of the New World practiced the
art of celestial navigation by surveying the position of the heavenly bodies in the
nighttime skies. It is somewhat of a coincidence that modern-day travel rely on a man-
made form of celestial navigation—the Global Positioning System (GPS).

GPS may be considered one of the most notable inventions of the 20th century.
Originally conceived and developed by the Department of Defense, GPS has been
successfully integrated into navigation systems installed within aircraft, ships,
submarines, and weapons of various types. GPS has also found many civilian
applications, including a vast amount of consumer products that range from navigation
for automobiles, boats, and aircraft, to the location of an individual with a GPS-equipped
cellular telephone [3].

While the applications of GPS in both military and civilian domains are vast, the
system does have some drawbacks. One limitation of GPS concerns the availability of
the transmitted signals. Since it is necessary to have signal reception from at least four
GPS satellites to calculate position fixes, some locations may not receive adequate
satellite coverage. It has been widely established that places such as dense urban

environments, valleys and canyons, and heavily forested regions suffer from occlusion



problems. The GPS signal also is attenuated as it propagates through the exterior walls of
building structures to the point that indoor navigation becomes difficult. Hostile or
inadvertent radio-frequency jamming could also deny the user the proper reception of
these essential GPS signals.

A second limitation of GPS is that the update rate for some applications may not
be sufficient [4], [5]. For example, a vehicle traveling at high speed, such as a tactical or
strategic aircraft, or one capable of accelerated maneuvering, will traverse a substantial
distance in a short amount of time. It is necessary that some means of exacting position
in between the GPS updates be implemented. In practice, many modern navigation
applications combine GPS and an Inertial Navigation System (INS) with a Kalman filter,
as depicted in Figure 1, [6], [7]. The INS and GPS work in a complementary manner.
An INS provides position information in between those times when a GPS solution is
unavailable. When a GPS fix is available, it is used to correct the errors that have
accumulated in the INS solution. Other aiding systems that have been used in
conjunction with GPS and INS include radar updates, celestial measurements, static and

dynamic pressure measurements, and magnetic compass heading [8].

(True position + INS errors) + Estimated inertial
INS » —»  position
* (dhss- SR |
.| Kalman Estimated INS
S - | Filter errors

(True position + GPS errors)

Figure 1. Aided inertial navigation system (From [7]).

In general, navigation systems can be classified into one of two types. The first
may be thought of as an absolute navigation system. In this type, the navigation system
makes position estimates that are referenced to an installed infrastructure. Each new

position update, therefore, is derived wholly from a new set of measurements. An
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attractive feature of this type of system is that errors that occurred in past position
estimates do not propagate into future estimates. A disadvantage, however, is that this
type of navigation system requires good “line-of-sight” to the infrastructure. Examples
of theses types of systems include GPS, Loran-C, and celestial navigation.

Alternatively, a relative (or incremental) navigation system is one where new
position estimates are computed with respect to previous ones. Often, this is called dead-
reckoning navigation. The INS is an example of this type of position tracking system,
wherein acceleration measurements are doubly integrated at the end of each sample
interval to derive position. A well-known limitation of this type of system is that position
errors tend to grow, and the system must be periodically reinitialized. An advantage, on
the other hand, is that the relative navigation system does not require the use of an
infrastructure; therefore, it can be used in those places where the infrastructure of the
absolute navigation system is unavailable.

Lastly, a third and final form of the navigation system is a hybrid, as shown in
Figure 1. It combines the attributes of the absolute navigation system with those of the

relative navigation system.
B. SENSORS FOR INERTIAL NAVIGATION

Perhaps the first to recognize the utility of a self-contained system for guidance
and navigation of a vehicle were the Germans during WWII, when they assembled gyros
and accelerometers into a platform and installed the resulting inertial measurement unit
(IMU) into V-2 rockets to deliver a deadly payload to targets lying across the English
Channel in England [9]. Immediately after the war, the United States, impressed by the
German’s technological achievement of the rocket’s IMU, initiated an engineering
program to further study and improve the design. As a result, the modern IMU has
evolved into a highly complex system of precision mechanical assemblies, electronics,
and advanced algorithms. In their present form, the IMU is manufactured in one of two
varieties: the platform IMU and the strapdown IMU. Both variants contain two or three
mutually perpendicular accelerometers for measurement of motion along a defined set of

reference directions.



A main distinction between the two architectures, however, lies with the manner
in which the acceleration measurements are accomplished. In the platform IMU, gyros
are used to stabilize the axis of an accelerometer and align it with that of a navigation
reference frame. More specifically, the spin axes of a set of mutually perpendicular
gyros—having a very large angular momentum and tending to resist any change in their
orientation—are aligned with the axes of a navigation reference frame. The gyros are
mounted into a cage such that their axes may tilt freely relative to the cage (and vehicle)
in which they are mounted [9]. As the vehicle orientation changes during the course of a
mission, the gyro axes remain fixed and aligned with the navigation reference frame.
Consequently, the accelerometers, whose alignment have been preserved with that of the
navigation frame, produce measurements of motion already referenced in the desired
navigation coordinate system. It then becomes a simple matter to doubly integrate these
measurements to derive the new position.

Alternatively, a strapdown IMU is one in which the accelerometers are “strapped”
to the vehicle body. As such, as the vehicle pitches, rolls, and yaws, so do the axes of the
mutually perpendicular accelerometers. The resulting measurements of acceleration are
consequently referenced in a body frame and not in the required navigation frame. Gyros
are used in this mechanization to measure body rotational rates [10]. From these
measurements, the vehicle orientation is derived and subsequently used to reference the
acceleration measurements in the navigation frame. Then, in a similar fashion to the
platform IMU, the properly referenced accelerations are doubly integrated to derive a
position.

Platform IMUs tend to be large and heavy. They are constructed of mechanical
moving parts and require periodic maintenance to maintain the mechanical hardware in
good working order. Their use is primarily reserved for high-accuracy applications and
long range missions. Strapdown IMUs, on the other hand, tend to be smaller and lighter
than the platform IMU. They also require less power to operate and cost less than the
platform IMU. A disadvantage of the strapdown IMU, however, is that greater
computational effort is required because of the requirement to resolve the accelerometer

measurements in the navigation frame before integration.



C. MEMS TECHNOLOGY

Micro-electro-mechanical systems (MEMS) technology has enabled the
miniaturization of various types of common sensors. Sensors that have been
manufactured with MEMS technology, such as accelerometers, rate gyroscopes, and
pressure sensors, are much smaller than those manufactured with conventional
macroscale techniques (welding, casting, machining). MEMS-based sensors are
manufactured with mature microelectronic manufacturing processes. As a result, the
sensing element can be combined into the same substrate with required signal
conditioning and signal processing electronics. Typical electronic processes that may be
applied to a sensor signal include biasing, low-pass or high-pass filtering, amplification
(scale and offset), analog-to-digital conversion, or even self-diagnostics of the sensor
[11].

The MEMS-based sensor has found a wide array of applications due to its smaller
size, lighter weight, and lower power consumption. For instance, the automobile industry
has successfully integrated MEMS accelerometers into their vehicles for crash detection.
More recently, the rate gyroscope has been used in a new feature of automobiles called
vehicle stabilization [12], [13].

1. Survey of MEMS Devices

MEMS devices beyond those of accelerometers and gyroscopes have been
developed. Honeywell, Inc., manufactured an infra-red thermal imaging sensor that is
capable of operation at room temperature [14]. A carbon monoxide gas sensor called the
MGS1100 was manufactured by Motorola, Inc. [15]. Knowles Acoustics, Inc.,
developed the SiSonic microphone. The major advantage of this type of microphone is
the fact that it can be integrated into automated printed circuit board fabrication assembly
lines that operate at elevated temperatures [16]. The more common electret microphone,
which is not capable of withstanding these elevated temperatures, must be installed by a
secondary assembly process, adding time and cost to the overall assembly.

Still, other devices beyond sensors have been manufactured with MEMS
technology. Texas Instruments invented a micromachined steerable mirror that it has
5



successfully marketed for use in projection displays, [17], [18]. A more ubiquitous use
of MEMS technology is found in the ink jet printer. IBM patented a number of designs
for silicon nozzles used to reliably deliver precise amounts of ink [19], [20], [21]. An
optical switch for use in a fiber optic network employing wavelength division
multiplexing has been patented by several companies including Optic Net, Inc. [22],
Fujitsu Laboratories [23], Agere [24], and Xerox [25]. If a MEMS device is built upon a
gallium arsenide substrate rather than silicon, then devices suitable for operation above
1 GHz can be manufactured. Radio frequency MEMS, or RF MEMS, such as switches,
antennas, and variable capacitors have been developed in the laboratory [26]. A
thorough discussion of the many MEMS applications is exhaustive, nevertheless, [11]
and [27] are good references to begin an in-depth survey of the many areas that have

benefited from MEMS technology or are postured to benefit in the future.
2. An IMU Based on MEMS Technology

The widespread use of the MEMS-based accelerometers and gyros in the
automotive industry has reduced the cost of these sensors to the point that they become
attractive for use in other applications—most notably the Apple iPhone and the Nintendo
Wii-mote. The former uses these sensors to determine the orientation of the display and
to detect finger taps. Nintendo’s Wii-mote incorporates this type of sensor for motion

sensing and gesture recognition to interface with a video game [28].

In 2001, Marins et al. began building prototypes of a miniature strapdown IMU
with accelerometers and gyros [29]. The prototypes also included magnetometers for
measurement of heading. This concept appealed to a number of manufacturers, including
XSense, Microstrain, and MEMSense, which developed their own versions of the
miniature IMU for the commercial market; see Figure 2. These units alleviated the
researcher from having to design his/her own custom printed circuit boards for
integration and packaging of the sensors. The commercial units addressed all of the
technical issues related to the filtering and sampling of the sensor signals, as well as the
precise mechanical alignment required for the sensors. These units generally
incorporated a microcontroller to handle the analog-to-digital conversion, processing, and
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formatting of the sampled data for subsequent transmission via any number of means,
including RS-232 or 12C. Upon assembly at the manufacturer facility, all of the essential
calibration and compensation constants could also be programmed into the

microcontroller to improve the overall accuracy of the reported sensor data.

Because of their light weight, small size, and low power, one of the applications
for which these units are suitable is personal navigation. A miniature inertial/magnetic
measurement unit (IMMU) may be worn by a user, and as he/she moves about from one
place to another, the sensed accelerations could then be processed to track their position
in a manner that is very similar to strapdown navigation. A limitation of this approach,
however, deals with the quality of the MEMS-based sensors compared to their
conventional counterparts found in the navigation-grade IMU. The MEMS-based
accelerometers and gyros exhibit more noise than those sensors used in navigation-grade
systems [30], [31]. Table 1 compares the MEMS-derived accelerometers and gyros with
those of the LN-200, which is a navigation-grade IMU manufactured by the Northrup-
Grumman; it is used in a number of military systems such as Predator, Global Hawk, and
the AIM-120 Advanced Medium Range Air-to-Air Missile [32]. The added noise
possessed by the MEMS-based sensors will cause the position error in the personal
navigation application to grow rapidly. Consequently, the development of innovative
algorithms beyond that of the accepted strapdown navigation algorithm will be required.



Figure 2. Miniature IMMU from Microstrain, Inc. (From [33]).
Table 1. Comparison of Noise in Navigation-Grade Sensors and MEMS Sensors.
Accelerometer Angular Rate Sensor
Nav-arade | Northrop-Grumman Fiber-Optic Gyro 0
9 orthrop. 5.9 /Hz (N2 0.07° /~/hr
MEMS Analog Devices 2500 /+/Hz | Analog Devices” 3.0° /~/hr
7y z : r
ADXL325 ADXRS610 [33]

* Analog Devices, Inc., specified the noise density of its sensor in units of [°/s/~/Hz ]. The

ADXRS610 has a noise density of 0.05° /s/~/Hz . This figure was converted into units of ° /\/; using the
following expression:

ARW[*/7/hr] = & NoiseDensity[* /hr/~/Hz]

where the noise density specified by Analog Devices was first multiplied by 3600 sec/hr to set the figure
into the proper units.
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D. PERSONAL NAVIGATION

While position tracking solutions utilizing GPS and the INS have been
implemented with great success on maritime and aerospace vehicles, the transition of this
concept to the problem of tracking the position of an individual is in its infancy. One
may argue that such an approach to this problem is unnecessary and that a personal
navigation system based solely on GPS is sufficient. However, for reasons stated
previously, namely the availability of the GPS signal (or lack thereof), there is a strong
case for using inertial/magnetic measurements in a personal navigation application. This
concept is valid in situations where the GPS signal can not be received. Additionally,
since it is uncertain how long the GPS signal may be unavailable during the course of a
pedestrian trip, there exists the need for an IMMU implementation that is reliable and
robust to compensate for the GPS downtime.

A main component of this body of work deals with the subject of personal
navigation. Subsequently, it is worthwhile to spend a moment expanding on the
definition of the subject. Personal navigation in this context refers to the tracking of
one’s position. A recent article found on the internet [34] suggests that modern personal
navigation is based solely on the use of handheld GPS devices. However, there are other
ways that one could perform the task of personal navigation. Making observations of
landmarks and correlating them to a map of the region, as had been done for millennia, is
certainly a valid approach. Therefore, the term, personal navigation, does not imply
which technique is used to accomplish this task. In the context of this work, however,
personal navigation refers to the use of inertial measurements in a dead reckoning scheme

to establish the position of an individual.

1. Applications for Personal Navigation

There are a number of potential applications for the personal navigation
technology, both military and civilian. The Marine infantry learn in training how to track
their position using nothing more than a map and a magnetic compass. However, this
technique is limited by the fact that good line-of-sight to mapped landmarks is required.
In dense jungle or heavily forested areas, the line-of-sight to these landmarks may not

9



exist, and the aid of GPS may be unavailable. A personal navigation system tailored for
infantry use could prove itself useful in this situation. Still another military application
could be found in the potential increase in situational awareness offered to a team of
marines or soldiers in a tactical situation. Knowledge of the location of fellow team
members in a building or other urban combat setting could improve the overall situational
awareness and increase the likelihood of a successful mission outcome.

Still another potential application for a personal navigation system pertains to
assistance for the vision impaired [35]. GPS-based solutions have been developed. In
[36] and [37], GPS information is integrated with a location database to give the user
audible cues to a desired destination. The IMMU-derived data could be integrated with
the GPS information to give the user a more accurate position solution and provide a
means of navigation during those times when the GPS signal is unavailable, for example,
when walking inside a residence or a shopping mall.

The coordination of emergency rescue operations is yet another area to benefit
from the development of a personal navigation capability. Given accurate location
information of emergency medical technicians, an emergency dispatcher can effectively
direct the services to the location of those in need. The position data could be
superimposed onto a building floor plan, if desired, to assist the dispatcher in guiding the
rescuers to the appropriate location.

A personal navigation system would not necessarily be limited to these
applications. With the advancement of engineering control systems applications, a new
type of robot has emerged, a true walking robot, like Asimo manufactured by Honda
Corp. Asimo is one of the first robots of this type to integrate a feedback control system
to ensure that the robot is able to maintain its balance as it walks. Furthermore, the robot
is able to shift its center of gravity and rotate its hips, as required, to coordinate turns as it
travels [38]. This provides the robot with a smoother, more human-like motion.
Wheeled robots, which are the predominant type of robot with a locomotion capability,
use encoders on their wheels to track their position as they move about a space.
However, walking robots, such as ASIMO, must use some kind of “step counting”

technique to determine their position in a room. As the robot emerges from the
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laboratory and into the real world, a personal navigation system could potentially offer
some alternative means of navigation within a larger space.

The impetus for research in this area came from ongoing work by Yun et al. at the
Naval Postgraduate School in support of a U.S. Army sponsored program to develop a
posture tracking capability for training in a virtual environment. A detailed description of
this work is found in [39], [40], [41], [42], and [43]. With the development of a personal
navigation capability, another level of realism can be created within the virtual
environment. Through the incorporation of accurate position data into the virtual

environment, a more realistic training experience may be envisioned.

2. Objective for Personal Navigation

The primary objective of this dissertation is to develop a personal navigation
system (PNS) that uses the miniature IMMU. The PNS will require the user to carry an
IMMU on his/her foot. Accelerations induced by natural walking motion will be
processed to derive an updated position of the user. The strapdown navigation algorithm
will be adapted for this application. It will utilize an adaptive-gain quaternion-based
complementary filter that was specifically tailored for the PNS. Furthermore, the
strapdown algorithm will incorporate the concept of zero-velocity updates and a custom
gait-phase detection algorithm to determine the instances of the foot swing and stance
periods.

The PNS will be constrained for use only during normal biped walking.
Locomotion by other means (i.e., limping, skipping, hopping) was not considered in this
dissertation, but are topics for further study and development. Performance of the PNS
was initially examined for the case of running motion. It was found that the data sample
rate was insufficient to identify the necessary features of this type of locomotion and was
not considered beyond this point.

An additional operational limitation of the PNS deals with the walking surface.
Only flat, level walking surfaces were examined, such as concrete or other types of
manufactured flooring (tile, rubberized asphalt). Walking on softer surfaces such as grass
made it difficult for the gait-phase detection algorithm to determine the essential features

of natural walking motion.
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One more limitation of the PNS deals with the fact that it was only tested by the
author. Therefore, all the parameters that were adjusted in the PNS—there are a number
of thresholds and gains used throughout the system—uwere chosen to give the best tracks
for data that was collected by the author while walking with the miniature IMMU
attached to his foot. Additional consideration will be required to determine whether or

not the selected parameters are suitable for a larger set of users.

E. LOCOMOTION INTERFACE FOR THE VIRTUAL ENVIRONMENT

A virtual reality is a computer-generated environment intended to provide a
medium for one or more persons to interact in some manner—either with one another or
with the environment itself. The virtual reality incorporates features such as computer
graphics, sound, tactile feedback (haptics), smell, and any number of other user
interfaces, including keyboard and computer mouse to enhance the interaction with the
user [44]. Undoubtedly, the most common application of virtual reality is entertainment
[45]. Popular with the younger generation, the annual global sales of video games are
estimated to be $12 billion [46]. Another use of virtual reality is found on the World
Wide Web. Approximately 50 million people have created avatars to engage in this
virtual social network [47]. Non-entertainment applications of virtual reality exist, as
well, for use as training simulators, educational tools, as part of a therapeutic regimen, or
to aid in the visualization of an engineering or scientific problem [48], [49], [50].

The military has a demonstrated interest in using virtual reality. Military training
programs that have a component within virtual reality can be provided at reduced cost
and with the added benefit of enhanced safety [51]. For example, combat training with
live ammunition is costly and presents additional risks to soldiers. Training in a virtual
environment can reduce some of the costly burden and mitigate some of the safety risks
associated with this type of training. While training entirely in the virtual world is not a
suitable substitute for real-world training, it offers an opportunity for an acceptable level
of compromise. Another attraction of training in a virtual environment is that many
soldiers of the younger generation have grown up playing video games. In this regard,
they feel quite comfortable interacting with a simulated reality for training purposes, see

Figure 3 and [52].
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Figure 3. Navy personnel in a virtual reality parachute trainer wearing a head-
mounted display (From [53]).

Furthermore, the military, both U.S. and foreign, has employed training
simulators to educate personnel in the operation of advanced weapons systems, such as
tanks and aircraft. For these types of weapon systems, training in the virtual
environment reduces overall cost because it decreases fuel consumption and maintenance
requirements due to the reduced operation of the real weapon system. Moreover, the
safety of personnel and equipment is increased because they have some exposure to the
system operation before the actual hands-on experience. An added benefit of this type of
training is that it reduces the overall environmental impact because the actual weapon
system does not have to be used in the field as often [53], [54].

Another military application for virtual reality is in the treatment of post traumatic
stress disorder (PTSD) [55]. In this approach to PTSD therapy, the patient is gradually
introduced to the sensory details (visual, sound, and scent) in a virtual reality of the
trauma with the motivation that he/she will learn to manage the effects of the disorder.
This type of regimen, also known as a form of prolonged exposure therapy, has the
benefit in that it can be administered in the safe environment of the doctor’s office. In the
past, treatment for this type of disorder may have required that the patient confront the
source of the trauma or fear in a real-world setting, thus placing the patient (and attending

staff) in a potentially hazardous situation. With virtual reality therapy, however, the
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exposure can be accomplished in a safe location with all of the sensory stimuli introduced
in a controlled manner at the doctor’s discretion. An initial experiment of this approach
was conducted in 1997 on Vietnam veterans suffering from PTSD. The experiment
showed positive results, and the treatment has been advanced for use in Iraq war veterans

suffering from the same disorder [56].

1. Immersion and Presence

For a user to feel as an integral part of the computer-created virtual world, he/she
must have a sense of presence when interacting with the virtual environment. That is,
presence is the subjective measure of one’s feeling that he/she is in the virtual reality
[57]. Furthermore, presence is dependent on the level of immersion that a virtual
environment is able to offer. Immersion, on the other hand, is the objective measure of
the amount of sensory stimuli that is provided by the virtual environment. For example, a
virtual reality that uses detailed graphics displays, sound, and advanced user interfaces
will offer a higher level of immersion than one that only provides a low-resolution
display of the virtual environment without any other sensory stimuli. Consequently, for a
user of a virtual training program (or therapeutic regimen) to have a positive or rewarding
experience in a virtual environment, he/she must have a high sense of presence. In turn,
the high presence can only be achieved through an adequate level of immersion, which is
provided by the various forms of interfaces available to the user.

To that end, researchers and commercial developers have made interfaces of
various types to heighten the experience within the virtual environment. Sound and
graphics systems are the most common, but locomotion interfaces have also been
developed. A locomotion interface gives the user control of his movement through the
virtual environment. Many are variations of treadmill designs, assumedly because this
requires user body motions most like those required in the real world and would most
likely result in a high sense of user presence. Other designs for locomotion interfaces are
based on step-in-place devices where the user steps on pads located on the floor to direct

his/her motion through the environment.
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2. Objective for the Locomotion Interface

In dealing with the subject of virtual reality, an objective for this dissertation is to
develop a locomotion interface for the virtual environment incorporating the miniature
IMMU. The locomotion interface will allow a user to navigate within a virtual
environment. A miniature IMMU will be worn on each foot; a custom C++ application
called MOVESMover interprets the user’s foot gestures to direct his translation through
the virtual environment. The user is allowed to move forward, walk left/right, side-step
left/right, and turn-in-place clockwise or counter-clockwise. Systems that utilize large
displays where the user remains fixed in one location are suitable for this type of
interface. Specifically, the locomotion interface was designed for a marksmanship
training system that projects virtual targets onto a large projection display located
immediately in front of the trainee.

A limitation of this interface, however, is that the user is not allowed to move
backwards through the virtual environment. In spite of this, the user can turn-in-place to
face the opposite direction, then walk forward to achieve a similar translation. A second
limitation is that the interface only operates in one speed. The pace of the foot gestures
could not be interpreted accurately with our MOVESMover program. Consequently, the

speed was programmed to one value only.

F. DISSERTATION OUTLINE

This dissertation primarily focuses on the development of the PNS, but a chapter
is dedicated to explaining the design and operation of the locomotion interface that was
developed for a virtual environment, which also utilizes the miniature IMMU.
Background material relevant to the subsequent chapters is presented in Chapter II. It
introduces the zero-velocity updates and the gait-phase detection algorithm. An
introduction to the quaternion and its role in the strapdown navigation algorithm is also
included here. The Factored Quaternion Algorithm (FQA), which is used for orientation
estimation, is presented in Chapter I1l. Additionally, the manner in which the FQA is
integrated into the complementary filter to give improved dynamic performance is also
discussed in this chapter. The PNS and all of its component algorithms are presented in
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Chapter 1V, along with a summary of its performance. In Chapter V, the novel
locomotion interface is presented, which was a by-product of the research work carried
out in pursuit of the PNS. Lastly, conclusions and recommendations for future research

are provided in Chapter IV.
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Il. BACKGROUND AND PRELIMINARY WORK

This chapter presents material relevant to the development of the PNS. Since the
subject of this dissertation deals in large part with human walking motion, it is
worthwhile to begin this chapter with an examination of the salient features of
ambulatory locomotion. After this, a brief review of related work is outlined, as well
as,previous work that was conducted at the Naval Postgraduate School. This chapter also
introduces the concept of the zero-velocity updates and the gait-phase detection
algorithm, two essential components that are integrated into the strapdown navigation
algorithm and adapted for use in the PNS. The chapter concludes with some initial trials
of the PNS and highlights the need for a quaternion-based orientation algorithm that is

tailored for this particular application.

A. HUMAN GAIT CYCLE

Walking is the most natural form of locomotion. It is a highly complex
coordinated movement of our feet, legs, hips, arms, and torso to propel our center of mass
in a forward direction. Walking is an innate ability we acquire not too long after we have
developed sufficient motor skills to perform this articulated motion. The average age one
learns to walk is 11 months. Generally, the details of walking are given very little
consideration. That is to say, most of us pay little attention to how the different parts of
our body move when we are walking, what muscles are involved, or how we balance and
control the location of our center of gravity. Walking is second nature. However, an
understanding of human walking motion is important because it relates to the analysis of
the normal gait cycle and to the identification and treatment of neurological and
physiological disorders. A detailed study of this complex motion would be exhaustive,
involving at the very least the fields of anatomy, physiology, and biomechanics.
Fortunately, for our purposes, we require only a simplified analysis of this complex body
motion.

The gait cycle of normal human walking is defined as the interval of motion from

heel strike to heel strike of the same foot [58]. Figure 4 shows an example of one cycle
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of normal human walking motion. At the left of this diagram, the human figure begins a
gait cycle at the moment the heel of the right foot strikes the ground. The gait cycle
continues through several distinct phases, such as, the toe-off phase of the left foot, heel
strike of the left foot, toe-off phase of the right foot, and concludes with another heel
strike of the right foot. Alternatively, the gait cycle may be analyzed with regard to the
motion of the left foot. Figure 4 further shows how ambulatory motion consists of two
fundamental phases: a stance phase and a swing phase. The stance phase of either foot is
the interval between its heel strike and toe-off. It represents the period that this foot is in
contact with the ground. A complete gait cycle, therefore, has two stance phases, one
corresponding to each foot. The stance phase occupies approximately 60% of the normal

gait cycle.

Figure 4. Phases of the human gait cycle (From [59]).

The swing phase is characterized by the fact that the foot does not bear any
weight during this interval. In this phase, the foot begins accelerating at the moment of

toe-off until a maximum acceleration is reached somewhere in mid-swing, at which time
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deceleration begins to slow the foot velocity in preparation for the subsequent heel strike.
There will be two swing phases in a given gait cycle. This interval occupies
approximately 40% of the normal gait cycle.

A double support phase is another characteristic of normal walking motion. This
is the interval of normal walking when both feet are in contact with the ground. There
are two such periods of double support in each gait cycle. At faster walking speeds, the
double support period decreases and disappears altogether at the onset of running motion.

Whether the motion is walking at slow or moderate speeds, or running at fast
speeds, most of the motion generally occurs in the sagittal plane of the human body. The
predominant amount of motion of the feet and legs coincides with this plane. Figure 5
shows the location of the sagittal plane, along with the transverse (or horizontal) plane
and the frontal plane. Normal walking consists of body motion beyond that of the feet
and legs, however. The pelvic bone also exhibits some motion in support of normal
walking. The pelvis will rotate in the transverse plane and tilt downward in the frontal
plane during the course of walking. The torso will also exhibit some motion in these
planes. Because of their inertia, the arms will appear to rotate in the sagittal plane as the
center-of-mass moves forward—creating the appearance that the arms are swinging.

Some of the more common parameters used to describe the normal gait cycle are
the stride length, walking speed, and cadence. Stride length measures the distance
traversed of a given foot in a particular gait cycle. It is approximately half of the step
length, where the step length is the distance separating the feet during the double support
phase. Walking speed is a scalar quantity that gives the rate of travel of the center-of-
mass. Lastly, cadence is reported in number-of-steps per unit of time. These parameters
are used in the analysis of the human gait cycle and diagnostics of related disorders.
They are highly dependent on individual features, such as, stature, weight, age, and
gender.
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Figure 5. Planes of body motion (From [59]).

B. RELATED WORK

Small, lightweight accelerometers and gyros have been used in the past to study
human body kinematics. Among the various motivations for this research was a need to
assess physical activity and its relationship to energy expenditure [59]. Others have
sought to classify body motion patterns and relate these measurements to biological and
psychological data, such as, gender, emotion, and personality [60]. Still, other
applications concern the rehabilitation of those suffering from injuries or disorders
affecting normal walking behavior, for example, as in the development of a

neuroprosthesis to alleviate “dropped-foot” syndrome, as described by Pappas et al. [61].

1. Related Works Using Small Lightweight Sensors

In Pappas et al., the researchers demonstrated a gait phase detection system that
merged angular rate data from a gyro attached at the heel of a shoe with data from a set of

force sensitive resistors glued to the insole of the same shoe. These data were then fed
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into a state machine to determine the corresponding phase of a particular gait cycle:
stance phase, heel-off phase, swing phase, or heel-strike phase. The system was reported
to have an accuracy of 99% for determining the gait phase during walking motion,
ascending or descending stairs, walking on inclines, and running for short periods. This
information was then used to stimulate muscles used to elevate the foot during a given
swing phase.

With regard to personal navigation, various approaches have been introduced.
Some have the sensors attached at the waist or torso and used a combination of inertial
sensors and other navigational aids. For example, Lee from Korea and Mase from Japan
collaborated on several papers that explored different techniques to assess walking
features, determine distance, or compute position. In [62], they utilized a two-axis
accelerometer, a digital compass, and an infra-red beacon system to aid in landmark
recognition. The sensors were arranged in a small enclosure worn on the waist of the test
subject. The researchers focused on a scheme to count steps and identify whether the test
subject was walking on level ground, walking up, or walking down a stairway. They
examined the use of the cross-correlation of the x-axis and z-axis accelerometer as a
means to establish one of the three types of ambulatory motion. The researchers reported
the ability to identify level walking and climbing down stairs with more than 95%
success and climbing up stairs with 83% success. They also proposed an algorithm to
determine stride length based on the time between observations of peak accelerations, but
no experimental results were presented.

In [63], the same collaborators used an arrangement of four orientation sensors
(one on each thigh and one on each leg) to determine stride length. The orientation
sensors manufactured by NEC Tokin, model MDP-A3U9 consisted of three
accelerometers, three angular rate sensors, and three magnetometers to provide three-
dimensional orientation of each limb. They used the data from these devices in a biped
stick model of the human figure to calculate the stride length after each step. The model

related the measured orientation (Euler angles) of each limb in a trigopnometric manner to
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tep length. The authors reported a 2.3% average error in step length estimation based on
the limited testing of this sensor arrangement on one test subject during a trial that
consisted of walking 30 steps.

In another work by the same researchers, they explored some techniques to
recognize whether the subject was sitting or standing, climbing stairs, descending stairs,
or walking on level ground [64]. When the algorithm identified level walking, it then
tried to establish walking speed (slow, normal, or fast). The sensors used were a two-axis
accelerometer and one rate gyro, which were carried in a small box and inserted into the
pocket of one’s trousers. An electronic compass whose output consisted of one of four
discrete values representing the directions of north, south, east, or west was worn on the
waist. In order to classify the type of motion (i.e., sitting, standing, walking) Lee and
Mase organized the sensor data into a “feature vector” that was used in a fuzzy logic
scheme. They reported better than 92% success for the task of motion recognition.

In this same work, the researchers developed a method for location recognition
that was based on a table look-up of presurveyed locations in an office space. A
displacement vector with the number of steps taken in each direction was used for input
to the look-up table. The authors also reported good results with this technique from the
testing of one individual.

Researchers have also investigated attaching sensors to the foot. While this may
be considered a more inconvenient location for the sensors than the waist or torso, this
offers the opportunity for mitigating some of the errors in the computed position due to
the occurrence of the foot’s zero velocity during the stance phase. Sagawa et al. in [65]
reported good results when they computed distance walked using this drift correction
technique that was applied to data derived from a foot-mounted three-axis accelerometer.
In addition to the three-axis accelerometer, the experimenters used an angular rate
gyroscope, also attached to the same foot. The phase of the gait was detected by
comparing the foot angular velocity with a specified threshold. The acceleration was
integrated to produce velocity, and then a correction was applied to this result to
compensate for the error that had accumulated during the swing phase. Another

integration of the corrected velocity data produced the calculated distance. An average
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computed distance of 30.0 + 0.8 m was reported for eight test subjects walking at various
speeds over a 30.0 m path. The error correction applied to the velocity data was based on
the fact that at the end of the swing phase, the foot comes to rest on the ground and will
have a zero velocity. By identifying this point in the velocity profile (i.e., where the foot
had come to rest) an opportunity was provided for correcting the error that had
accumulated during the integration of the acceleration data.

Similar work was described by Cavallo and Sabatini in [66]. This work sought a
technique to identify gait cycles with a foot-mounted IMU that consisted of a two-axis
accelerometer and a single-axis angular rate gyro. Tests were conducted on a number of
subjects walking on a treadmill machine. The authors determined velocity and incline of
the treadmill from the measurements of acceleration and angular velocity. They
employed a “resetting” algorithm to account for the sensor errors resulting from the
integration of the noisy sensor data. This algorithm made use of the zero foot velocity
and provided an opportunity for recalibration of the sensor. In a subsequent work, the
same group of researchers explored a GPS/INS implementation of a personal navigation
system [67]. They compared IMU-calculated distance with GPS-computed distance to
verify that good results could be achieved through the integration of the accelerometer
data. Heading was derived from the GPS information to produce a position tracking
capability.

Randell, Dijiallis, and Mueller presented an alternative approach to personal
navigation in [68]. They experimented with different configurations of a two-axis
magnetic compass and a single-axis accelerometer to determine position. The
accelerometer was attached to the foot and used to make estimates of stride length. The
authors proposed that there was a correspondence between the peak vertical acceleration
of the foot and the stride length. In this manner, the technique avoided the integration of
any sensor noise in the accelerometer. The authors reported good results in the
assessment of traveled distance, but stated that the two-axis magnetic compass did not
yield reliable heading information, especially in the urban environment. The authors

indicated that this was likely due to anomalous variations in the magnetic sensor data and
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that the sensor could not be maintained in a level position during the experiments. They
further reported that a three-axis magnetic compass would be able to provide a means of
tilt compensation and yield better results.

2. Related Work at the Naval Postgraduate School

At the Naval Postgraduate School, in Monterey, California, researchers have been
involved with the development and testing of sensors for the purpose of inserting one’s
body orientation into a virtual training environment. The prototype devices were
miniature IMMUSs, which were assembled with accelerometers, gyros, and

magnetometers.

Bachmann in [39] described the development and testing of a miniature IMMU
for use in posture tracking. The devices were attached to the limbs of the subject. Data
from the sensors were merged in a complementary filter to produce a 3-D measurement
of orientation for each instrumented body segment. A virtual image (avatar) was then
generated that reproduced the posture of the individual. Figure 6 shows the concept of
the system, and Figure 7 shows Bachmann demonstrating the use of the miniature IMMU
sensors to orient the virtual avatar. This work was the impetus for the study and
development of the PNS at the Naval Postgraduate School.

Figure 6. Conceptual tracking system (From [39]).
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Figure 7. Bachmann demonstrating the MARG sensor and the avatar.
Sensors are attached to subject’s leg to measure its orientation (From [39]).

Recently, Moore in [69] explored the use of the Microstrain 3DM-GX1 sensor
(Figure 2). Like the custom prototypes used by Bachmann, the commercially-available
3DM-GX1 was a miniature IMMU. However, its built-in microcontroller calculated
sensor body orientation from the raw data and made this data available through its serial
communications port. This alleviated the user from having to develop an algorithm to
calculate the orientation angles. The raw sensor data from the accelerometers,
magnetometers, and rate gyros were also available to the user through the same
communications port. Moore initially used this sensor in the same fashion as Bachmann
to provide orientation or posture data for an avatar. Later he attached the sensor to his
foot to collect dynamic data of ambulatory motion. The data collected from these latter
experiments were analyzed to determine his position (distance and direction traveled)
from an arbitrary starting point. Moore concluded in his thesis that these sensors were
viable for use in personal navigation applications. However, due to the errors inherent in
the sensor data and the numerical integration of the corresponding data, additional effort
would need to be expended to develop their use in a practical personal navigation system.

Two important ideas that Moore explored were the application of the zero

velocity updates and the use of the gyro to detect the swing and stance phases of the foot.
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In the next two sections, the concept of the zero velocity updates and the gait-phase
detection algorithm are presented. They will become essential components in the PNS.

C. ILLUSTRATION OF ZERO VELOCITY UPDATES

One of the first tests that Moore conducted was to simply move the MARG sensor
through a straight line. Here, the sensor was placed on a table top and slid through a
linear distance of one meter. Figure 8 shows the results from this test. Acceleration is
seen in the top-most plot. In this test, the sensor was stationary for approximately six
seconds prior to its translation across the table. After its trajectory was completed, the
sensor was kept stationary for another seven seconds, approximately. The acceleration
appears relatively small during the stationary periods, while the acceleration occurring
during the sensor’s translation is clearly observed within the time period between six and
eight seconds. A numerical integration of this data (using Matlab’s cumtrapz( ) function)
produced the velocity plot, also shown in Figure 8. Similarly, integrating the resulting
velocity data gives the final distance of 12.44 meters—a considerable error when

compared to the actual distance of one meter.
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Figure 8. Result of one meter translation of IMMU (From [69]).

Upon closer inspection of the velocity plot, one observes that prior to the sensor’s
motion, as well as immediately after its motion, the velocity is nonzero. Integration of
this nonzero data in the velocity is responsible for the gross error in the computed
distance. These errors arise because the accelerometer’s output exhibits two behaviors
that must be taken into consideration—bias and drift. Bias is the nonzero output
measured when the accelerometer undergoes no acceleration. Drift is the randomly

varying portion of the sensor output often referred to as noise.

These errors may be mitigated through a two-step process. First, since the sensor
undergoes no acceleration outside of the time period between six and eight seconds, the
acceleration during those times may be equated to zero. Subsequent numerical

integration of the data will eliminate this component of error.
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Secondly, the measured acceleration between six and eight seconds will also be
influenced by the sensor bias and drift. To minimize this effect, the zero velocity update

was employed. The measured acceleration, an(t), consists of two components such that
a,(t)=a,(t)+¢, t=[0,T] (2.1)

where a,(t) is the actual or true acceleration and ¢ is a bias error that is assumed constant
in the time interval over which the acceleration occurred. In the example under
consideration, t=[0,T] corresponds to the time period between six and eight seconds.

Integration of an(t) will yield a calculated velocity, v(t), as shown in (2.2).

v_(t) =jam(t)dr
=jaa(t)dr+jgdr (2.2)
=V, (t) + et, t=[0,T]

The calculated velocity, v¢(t), is comprised of two parts. One component, v,(t) is
the true velocity that is derived from the true acceleration. The other component, which
is the product of ¢ and t, arises from the error in an(t). However, at the end of the
accelerated motion, when t=T, the motion has stopped, and the true velocity, that is v,(t),
is known to be zero. Substitution of this fact ( va(T) = 0 m/s) into the latter part of (2.2)

gives the expression for the error that is valid during the interval t=[0,T].

v.(T) (2.3)

The numerator in (2.3) is taken from the last sample of vc(t), when t=T.
Substitution of (2.3) into (2.2) and solving for v4(t) gives an expression that is used to
correct the velocity data for the error encountered during the interval of the accelerated

motion, as shown in (2.4).



Va (t) =V (t) -

@t, t=[0,T] (2.4)

With the actual velocity data in hand, a final integration of the data produces a
revised figure for the distance traveled. Figure 9 shows the corrected data plots and a
new calculated distance that is more acceptable than previously calculated. Moore
repeated this test for distances of two and three meters, the results of which are shown in
Table 2. The distance errors of 0.5% and 0.33% for the two- and three-meter tests,
respectively, are noteworthy in that they validate the technique for correcting the drift and
bias inherent in the accelerometer data.

Figure 9. Result of one-meter displacement of IMMU after data was corrected for
error (From [69]).
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Table 2. Results of linear displacement of IMMU (From [69]).

True Distance (m) Measured Distance (m) Corrected Distance
Uncorrected Corrected Error
1 12.44 1.00 0.0%
2 -1.45 201 0.5%
3 -2.57 2.99 0.33%

D. GAIT-PHASE DETECTION ALGORITHM

To utilize the zero velocity updates in a PNS, the IMMU was attached to the
user’s foot. It is here that a zero velocity is certain to occur during the stance phase of
normal walking. In this brief moment, the zero velocity can be identified and the
correction to the velocity profile applied as illustrated in the previous section. The first
trial of this concept in the navigation application required one to examine the acceleration
data and manually locate the intervals of motion within the plotted data. This rapidly
became tedious and highlighted the need for an automated technique for motion
detection. The angular rate of the foot measured by the installed gyros was found to be a

reliable signal to discriminate the periods of the swing and stance phase motion.

The algorithm that was developed was essentially a state machine with two
states—STANCE and SWING. Figure 10 shows the two states of the gait phase
detection algorithm and the allowed transitions between them. The operation of the state
machine was required to be synchronized with the user’s foot motion. That is, when the
user’s foot was in the stance phase, then the state machine must be in this state.
Conversely, when the user’s foot is in the swing phase, then the state machine should

reflect this state, as well. Two parameters were monitored during the execution of the

algorithm. The first was a composite signal, |a)| that was the magnitude of the angular

rate measurements
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ol = |0 + &’ + &? 2.5
o =& + ) + & (2.5)

where o,, o,, and o, were the individual angular rate measurements about the body
axes of the IMMU. This parameter was simply compared against a threshold, €,,. The

second parameter was a sample count, y, that was incremented until a specified number

of samples had satisfied the threshold condition.

Figure 10. State machine in the gait phase detection algorithm.

Figure 11 shows |a)| identified as the angular rate length on the vertical axis of the

plot, as well as, the output of the gait phase detection algorithm, shown in blue and red,

respectively. The value of the threshold, €, , is identified on the plot, as well.

Examination of the plot shows that the gait phase detection algorithm accurately locates
the periods of the swing and stance phase. This was achieved by the use of the sample

count parameter, y, which worked to minimize the effect of the wide excursions
observed in |w|. A simple threshold detection scheme would have resulted in the swing

phase being interpreted as two or possibly more steps within a given swing phase.
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Figure 12 shows a pseudo-code of the algorithm. A switch-case structure, which is
suitable for any type of state machine design, was used here. The variable, gaitPhase,
tracked the state of the state machine.

Lastly, the performance of the gait phase detection algorithm was tested using
data from several walks around an oval athletic track. For each walk, the total number of
steps taken was recorded and compared with the number of times transition 4 occurred in
the state machine. This transition marked the end of a step and incremented a counter for
subsequent analysis. Table 3 shows the performance of the gait phase detection
algorithm. For the five walks examined here, the algorithm consistently detected each
step. While the algorithm was proven to work reliably, occasionally, a step was missed.
This tended to occur during the first step of a walk and was likely due to the fact that user

had not achieved full cadence at this point in a given walk.
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Figure 11.  Angular rate length, |o| (blue), and the SWING/STANCE phases (red).
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Figure 12,

Table 3.

switch gaitPhase

case STANCE
if (fof <Qun)
gaitPhase = STANCE % transition 1
else
if (y>COUNT_Threshold )
gaitPhase = SWING % transition 2
else

y=y+1

case SWING
if (|o| > Qth)
gaitPhase = SWING % transition 3
else
if (y> COUNT _Threshold )
gaitPhase = STANCE % transition 4
else
y=y+1

Pseudocode for the Gait-Phase Detection algorithm.

Performance of Gait-Phase Detection algorithm.

Actual Steps Detected Steps

(Transition 4)
Walk 1 286 286
Walk 2 293 293
Walk 3 289 289
Walk 4 290 290
Walk 5 291 291
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E. STRAPDOWN NAVIGATION ALGORITHM

Now that we have a means of correcting the error in the computed velocity and an
automated tool for detecting the user’s steps, we turn our attention to the task of
computing our position. Since the IMMU is of the strapdown variety, the strapdown
algorithm will be employed. This algorithm is at the heart of any inertial navigation
system that uses a strapdown IMU. Many modern vehicles, such as, missiles and aircraft,
use a strapdown IMU as a major component of the installed navigation system. Perhaps

the best way to examine this algorithm is with a block diagram, as shown in Figure 13.
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Figure 13. Strapdown navigation algorithm.

The strapdown navigation algorithm begins with acceleration measurements made
in a body reference frame designated as <xb y° z”>. This reference frame coincides with
the axes of the strapdown IMU. Furthermore, it is aligned with the axes of the vehicle in
which the strapdown IMU is installed. The accelerations are designated by the vector,

a’, because there are three acceleration measurements to consider, a_, a,, and a’. As
the vehicle moves, a°gives the resulting accelerations for this motion. Next, the
algorithm requires that &° be referenced in the navigation reference frame, identified as

<x” y" z”> . Itis in this frame into which one wishes to plot his or her position.

Before going any further in the discussion of the strapdown navigation algorithm,
it is necessary to digress for a moment to consider the illustration shown in Figure 14 and
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to give a relationship between <xb y° zb> and <x” y" z“>. The two reference frames

under consideration are shown. The body frame, <xb yP zb> is aligned with the IMU and

the vehicle. As the vehicle pitches, rolls, and yaws, so do the axes of this reference

frame. The other reference frame shown is the navigation frame, <x“ y" z”>. In general,

the navigation frame is fixed and is aligned with some stationary point, the North pole or

=b

a star, for example. In order to resolve a° in the navigation frame, some method of

tracking the relationship between <xb yP° z”> and <x” y" z“> is required. Perhaps the

most familiar and intuitive way is the use of the Euler angles, also referred to as roll,
pitch, and yaw. Euler angles are easily interpreted, and they will be useful to examine the
relative orientation of the axes. An alternate way of expressing the relation between the
two reference frames is with the direction cosine matrix. However, for this work, which
builds on previous efforts, the quaternion will be used to express the relative orientation.
An advantage offered by the quaternion is the benefit of reduced computational burden
compared to that required when using Euler angles. A drawback, however, is that they
are not very intuitive. It is difficult to visualize the relative orientation by inspection of
the quaternion. Nevertheless, in embedded systems applications, the quaternion is

favored for its computational efficiency.

Figure 14. Navigation and body reference frames.
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In very simple terms, the quaternion, g, can be thought of as an extension of

complex numbers.  They are written as a four-element vector, such that,
g= [qo, ql,qz,qs]. An alternate representation of the quaternion is one that is comprised
of a scalar component and a three-element vector component, as q =[q0 q]. The most

common use of the quaternion is in the rotation of vectors. The quaternion rotation

operator, W= L (V), rotates V into W while preserving its length. For this application,
gis required to be a unit quaternion, such that |q|=1. In the strapdown navigation
algorithm, w= L, (V) will be used to rotate a’ into the <x” y" z”> reference frame giving

a". The implementation of L, (V) is as shown
a"=L,@)=qaq (2.6)

where &"is written in the form of a “pure quaternion” as [O,af,a';, a?], and q"is the

quaternion conjugate defined as q" = [qo,—ql,—qz,—q3 ] Furthermore, the product of the

terms in (2.6) is carried out as a quaternion multiplication.t

Returning to the strapdown navigation algorithm in Figure 13 and with the
accelerations properly referenced in a", the next step is to correct these measurements
for the local gravity, §. Since the accelerations measured in a"also have a component of

gravity, it is necessary to remove this part of the measurements in preparation for the
subsequent integration. The magnitude of the gravity vector is known to vary with

location, and in practice, this would be accounted for in the algorithm. Lastly, a double

integration of the acceleration yields the desired position in (x" y" z") given initial

conditions v, and Py .

T Multiplication of two quaternions, p =[p, p]and q =g, ] is defined as
pqg= po qo_ pq+ poq+qoﬁ+ pxq
The result of this operation is another quaternion of the form r =[r, F].
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F. STRAPDOWN NAVIGATION FOR PERSONAL NAVIGATION

The strapdown navigation algorithm is adapted for use in the personal navigation
application, as shown in Figure 15. The diagram shows the insertion of the zero velocity
updates (ZUPT) into the algorithm, which will work to reduce the errors that have
accumulated in the computed velocity, Vv". Corrected velocity will now be available at
the output of the ZUPT block for use in the derivation of the desired position, p". Also
shown in the figure is the location of the gait-phase detection algorithm, which triggers
the ZUPT at the appropriate time. Angular rate measurements of the foot are processed
by the gait-phase detection algorithm to indicate the instances of the stance phase and
swing phase. When the stance phase is detected, marking the interval of zero velocity,

then the ZUPT is employed in a manner similar to that which was discussed previously.
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Figure 15. Strapdown navigation adapted for personal navigation.

Also shown in Figure 15 is the use of the quaternion rotation operator, L, (@).

The algorithm requires that a quaternion, q, be provided. Generally, this would be

computed by the integration of angular rate measurements from the gyros.* However, in

this particular implementation, q is provided by a proprietary algorithm residing within

* The quaternion may be computed from the dynamic equation q(t) = %Q(c?)) q(t), where Q(@)is a
skew-symmetric matrix comprised of the instantaneous angular rate measurements. During each iteration
of the strapdown algorithm, the navigation computer must solve this equation to compute q(t) .
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the 3DM-GX1. Microstrain did not share the details of its algorithm for examination.
Suffice it to say, this was a very convenient feature of the 3DM-GX1 that relieved the
user from having to compute this figure.

G. INITIAL TRIALS OF THE PERSONAL NAVIGATION SYSTEM

The configuration of the hardware used in the personal navigation system is
shown in Figure 16. An IMMU was attached over the user’s shoe with a homemade
adapter fashioned from a recycled yogurt container, duct tape, and shoe laces. A cable
carrying power and data was routed from the IMMU to the small hip sack secured around
the user’s waist. The hip sack contained the 6-volt DC battery that supplied power to the
IMMU and an RS232-to-USB adapter, which interfaced the IMMU data to the mini-
computer, also shown in the figure. The mini-computer was a SONY VGN-UX180P that
had an Intel Core Solo U1400/1.2GHz processor, 512 Mbytes of RAM, and a 20.0 Ghyte
hard drive. It also was equipped with the Microsoft Windows XP operating system. To
collect data from the IMMU, a custom C++ data acquisition program was used. It logged
the IMMU data to a file on the SONY mini-computer. The data file was later transferred
to a desktop PC for post-processing.8 Data collected during each sample interval
consisted of a timer value that was provided by the 3DM-GX1 processor, the quaternion,
acceleration, angular rates, and magnetometer measurements. The sample rate was

approximately 50 samples per second.

8 This configuration was for development purposes. Later, the SONY mini-computer was
programmed to compute the position and transmit this data via wireless connection for real-time plotting
and tracking at a central location, for example.
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Figure 16. User with IMMU attached to foot and SONY mini-computer.

Several trials were conducted walking on an athletic track. Figure 17 shows three
walks of a straight line course of approximately 150 meters. The plots identified as
“MARG trial” are the tracks resulting from the navigation algorithm described in the
previous section. These tracks tended to drift from the very beginning of the walk and did
not reproduce a straight line, as had been expected. An attempt to make a comparison
with a set of GPS tracks is also shown. A small hand-held GPS device was carried

simultaneously during the walks to provide another source of track data.
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Figure 17. Straight line track of approximately 150 meters.

In another walk, this time around the circumference of the athletic track, the drift
in the computed position is again observed. Figure 18 shows this result. The walk,
shown in blue and identified as MEMS-IMU in the legend, started in a north-easterly
direction and continued in a counter-clockwise fashion returning to complete the oval
path at the origin. Immediately at the start of the track, the position is seen to drift from a
straight line where the course was known to consist of a straight section. On the
downward side of the track, where another straight section of the course exists, the
computed track does seem to reproduce this part reasonably well. This plot also attempts
to make a comparison with a GPS track, however, this is provided with the caveat that a
certain degree of post-processing of the GPS data was required, the accuracy of which is
uncertain. The GPS data is provided in terms of latitude and longitude with respect to
true north. To make the comparison with the inertial track, one must first convert the
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latitude and longitude coordinates into x-y coordinates, which involves a gross estimate
of the earth’s radius. Then the data must be rotated from true north to magnetic north
using the local angle of magnetic declination.
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Figure 18. Walk around the circumference of an athletic track.

H. ANOMALOUS QUATERNION BEHAVIOR

In the previous section, some initial results were presented of the PNS while
walking around an athletic track. The track showed a drift that began from the onset of
the walk. It is widely understood that inherent in all inertial navigation systems there
exists a tendency for growth in the position error, and the PNS was certainly expected to
exhibit a certain amount of this behavior. Nevertheless, it was deemed necessary to

investigate whether or not the observed drift could be reduced.
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1. Initial Investigation of Quaternion Performance

A component of the algorithm that was given consideration after these initial trials

of the PNS was the quaternion used in the quaternion rotation operator, a" =L, (@").

Recall that the quaternion used here was conveniently computed within the IMMU by a
proprietary algorithm within the unit and provided to the user. In [70], an investigation
of the dynamic accuracy of this quaternion was accomplished. A test stand was
constructed that consisted of a simple vertical pendulum with a length that was adjustable
from a few centimeters to approximately one meter. A 16-bit absolute encoder was
located on the pendulum axis to measure its angular displacement. This encoder
provided an angular resolution of 0.005 degrees and a maximum angular velocity rate of
180 deg/sec. The 3DM-GX1 was attached at the swinging end of the pendulum. As the
pendulum swung back and forth, dynamic data were collected simultaneously from the
encoder and the 3DM-GX1. Analysis of the resulting data showed a dynamic angular
difference less than +2 degrees, which was consistent with the manufacturer’s stated

performance.

With the results of the pendulum experiments in mind, it was surmised—albeit
incorrectly at first—that the Microstrain quaternion was not the source of the anomalous
drift observed in the personal navigation application (see Figure 17 and Figure 18). At
this time, other possible sources of the drift were investigated, such as, errors in the
accelerometer and angular rate measurements, as well as, the magnetometers. Various
possible solutions were investigated including low-pass and high-pass filtering of the
data, Kalman filtering, and even the integration of a second shoulder-mounted 3DM-GX1
to serve as a source of heading information. It was not until some time later while
another application for the 3DM-GX1 was being developed that the true source of the
anomalous drift was discovered. Indeed, it was the quaternion that was computed from
within the Microstrain 3DM-GX1. The quaternion was found to exhibit a slow
wandering drift similar to that observed previously in the initial PNS trials. Furthermore,

the anomalous drift was repeatable in laboratory experiments.
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2. Quaternion Tracking During Arbitrary Motion

A simple experiment was conducted in the laboratory to further investigate the
drifting orientation. This experiment began with the 3DM-GX1 sitting undisturbed on a
flat surface. Then, after a few seconds, the sensor was raised and moved swiftly through
the air in an arbitrary fashion for approximately four seconds. After the motion, the
sensor was placed on the flat surface again in the original orientation, all the while
logging the sensor data and the computed quaternion from the 3DM-GX1. Figure 19,
Figure 20, and Figure 21 show the three-dimensional sensor measurements acquired
during the experiment. The stationary periods can be identified on the plots, as well as,
the period of motion that occurred between approximately 15 seconds and 20 seconds.
The time periods when the 3DM-GX1 was stationary did not exhibit any significant
discernible drift in either of the accelerometers, angular rates, or magnetometer
measurements. However, examination of Figure 22, which shows the individual
elements of the Microstrain quaternion for the same experiment, reveals the slow
wandering drift in all four elements of the quaternion. Figure 23 shows the quaternion
converted into Euler angles. One observes that the individual elements of the Microstrain
quaternion (and Euler angles) did not return to the original values after the motion
stopped, but instead exhibited the slow wandering behavior similar to what had been seen
in the initial trials of the personal navigation application. This experiment was repeated
numerous times and with other 3DM-GX1 sensor modules; identical results were

observed in all cases.

While the results of the pendulum experiments in [70] indicated that the
Microstrain quaternion was accurate to within the manufacturer’s stated specification, in
the end, it was shown to be deficient for our application. Since the manufacturer’s
algorithm was not available for analysis, one could only speculate as to the underlying
cause of this performance limitation. Many works on the study of biological motion have
modeled the act of human walking as consisting of a set of single or double inverted
pendulums, see [71], [72], and [73], for example. The individual sections of the leg
(femur and tibia) corresponded to one of the lengths in the double-pendulum system. It

was this thinking that led to the idea that the pendulum experiments would be adequate to
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quantify the quaternion accuracy for the personal navigation application. However, it
became apparent that true human walking motion was more complex than that which had
been modeled with the double pendulums, at least with regard to the motion of the foot
where the IMMU was attached. Instead, foot motion is comprised of as a series of abrupt
start and stop events, with accelerations of +5 G’s or more and angular rates in excess of
300 degrees/sec. The motion of the foot was unlike that of the vertical pendulum, where
the pendulum’s velocity will increase and decrease gradually without the sudden
discontinuous changes that the foot experiences. Furthermore, one may speculate that
when the foot motion data was input into the IMMU quaternion algorithm, this motion
would appear more like impulses and the slow wandering drift was an indication of the

algorithm’s impulse response.
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Figure 19. Accelerometer data for the arbitrary motion.
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Figure 20.

Figure 21.
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Figure 22.

Figure 23.

Quaternions
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l. SUMMARY

This chapter presented background material relevant to the development of the
PNS. It began with an examination of the main features of human walking motion. For
our purposes, however, it was only necessary to consider the motion of the foot and its
two fundamental states—the swing phase and the stance phase. A brief review of related
work was also included in this chapter including preliminary work conducted at the
Naval Postgraduate School. Two essential components of the PNS were also introduced
here. The first being the zero-velocity updates, which provide a means of reducing the
error in the computed velocity and subsequently the computed position. A second
component of the PNS that was included in this chapter was the gait-phase detection
algorithm that works to identify those periods of the stance phase and swing phase of the
foot. The strapdown inertial navigation algorithm was also presented here and the use of
the quaternion in relating the body reference frame to the navigation frame. Lastly, this
chapter examined the dynamic performance of the proprietary IMMU quaternion. It
showed that for the PNS, the performance of this quaternion was not sufficient and
highlighted the need for an alternative means of acquiring this essential element of the

strapdown navigation algorithm.
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1. QUATERNION-BASED COMPLEMENTARY FILTER

The last chapter introduced the strapdown navigation algorithm and its adaptation
to the PNS by incorporation of the zero-velocity updates and the gait-phase detection
algorithm. Moreover, it highlighted the need for an orientation algorithm (or attitude
filter) that was capable of tracking the dynamic motion of the foot.

In a typical strapdown navigation system—our PNS falls into this category—an
accurate determination of the sensor body orientation is required. Consequently, the
proposed PNS required that the three-dimensional attitude of the foot be determined as
accurately as possible during each sample interval of the motion. Accurate knowledge of
the foot orientation was essential for the rotation of the sensor body acceleration
measurements into the appropriate reference frame prior to integration and the eventual
computation of position.

This chapter presents the attitude filter that was developed specifically for the
PNS. Firstly however, this chapter begins with a discussion of the two main approaches
to the problem of attitude estimation. One of them can be considered a relative or
incremental technique that is based on measurements of body rotation rates. Gyroscopes,
or more appropriately, angular rate sensors, provide the essential body rotational rate
measurements for this category of attitude filters. The alternate methodology for attitude
determination, which can be thought of as an absolute technique, comes from direct or
indirect measurements of angular displacement with respect to two or more reference
axes. Sensors, such as, accelerometers, magnetometers, and star trackers, are some of the
common devices used in this class of angle-referencing algorithms.

However, as will be shown in this chapter, due to the inherent limitations of the
accelerometers and gyros within the IMMU, a variant methodology was required. The
proposed solution for the attitude determination problem was a hybrid of the two
approaches just described. It had the form of a complementary filter, which is generally
used to blend measurements from two or more sensors having a complementary
frequency performance. This chapter examines our proposed complementary filter in
detail and gives an evaluation of its performance in a dynamic setting. A simple vertical
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pendulum served as the test case for this evaluation. Finally, this chapter concludes with
a comparison of the manufacturer’s quaternion and that produced with our
complementary filter.

A. ATTITIDE DERIVED FROM ANGULAR RATE MEASUREMENTS

1. Direction Cosine Matrix

A PNS is not the only navigation application that requires accurate determination
of attitude. In fact, any navigation application that employs the strapdown algorithm
requires an accurate estimate of the orientation, regardless of whether the navigation is
for a missile, submarine, aircraft, satellite, or as in our case, the human foot. The
computation of the attitude turns out to be the most challenging part of the navigation
algorithm [10, p. 309]. Consequently, the published literature contains a myriad of
articles describing the various techniques that have been proposed for the computation of
attitude [74], [75]. One of the main methodologies for the estimation of attitude is by the
use of angular rate measurements. Angular rate sensors give the angular rate of rotation
about one of the principal sensor body axes. Because the angular rate measurements are
accomplished in the body reference frame, they can not be integrated directly to get
angular displacement in the navigation reference frame. Instead, these measurements are
used in a dynamic equation that relates the three-dimensional orientation to the

orientation rate-of-change as shown

Ct? = Ct;] QD(:M (3-1)
where
0 -0, o
QDCM @, 0 —y (32)
-0, o, 0

The quantity C;'is the 3x3direction cosine matrix that relates the body frame to

the navigation frame, and Q. is a skew-symmetric matrix comprised of the angular
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rate measurements from a triad of mutually orthogonal gyros. Eq. (3.1) may be solved
within the navigation computer to give the most recent attitude update. Once C,'is

computed, it is used to resolve the acceleration measurements into the navigation frame

using
a"=cra°. (3.3)

This last equation implies that Cis an orthogonal matrix—a necessary condition to
maintain the magnitude of &°when it is resolved in the navigation frame.

2. Quaternion
Attitude filters based on the quaternion are also used in navigation systems. In a

manner similar to that of the direction cosine matrix, a dynamic equation relates the

quaternion to the quaternion rate as shown

G(t) =722, q(t) (3.4)
where
0 -0 -0, -o,
o, 0 o -o
Q, = : (3.5)
o, -0, 0 o
o, o -0 0

In Eq. (3.4) q(t)is the quaternion that relates the body frame to the navigation frame, and

Q,is the skew-symmetric matrix comprised of the angular rate measurements. When

Q, is constant over the sampling interval, At, then the solution has the form

qt+At) =e* " .q(t) (3.6)
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Once the latest quaternion has been computed, it is used in the quaternion rotation

operator, L, ("), to resolve the accelerations in the navigation frame. The exponential in
(3.6) can be expanded using the Taylor series

10, -At 1 (%Qq 'At)z
|

e = I4+EQq-At+ +h.ot (3.7)

where 1,is the [4><4] identity matrix and "h.o.t"are the higher order terms of the series

expansion. Substitution of the first two terms in (3.7) into (3.6) gives

q(t+At)={I4+%Qq -At}-q(t). (3.8)

This last equation produces the desired quaternion update with an error that is of second
order.

As a point of interest, the attitude quaternion is related to the direction cosine

matrix, C, , through the following equation [10, pp. 45],

(3.9)
(0 +af -5 —af)  2(0G-00s)  2(cs+00,)
=l 2(00,+00) (G -0+ —-07)  2(g0,—00,)
2(00,—06%,)  2(00+0%) (o5 —af -0} +af)

Furthermore, the quaternion, C.', and the Euler angles are related through the following

expressions,
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¢ = arctan [Cﬁj
C33

@ =arcsin(—c,, ) (3.10)

c
w =arctan {A}
C11

Figure 24 shows the Euler angles with respect to the navigation frame. Roll, pitch, and

yaw are positive rotations about the respective reference frame axes.

roll= ¢

Figure 24. Euler angles with respect to navigation frame.

B. ATTITUDE DERIVED FROM REFERENCE ANGLE MEASUREMENTS

1. TRIAD Algorithm

The previous section illustrated one of the main approaches to attitude
determination using angular rate measurements. An alternative method is to use
measurements of angular displacement relative to two or more references axes. A
reference axis may be the bearing to the sun, the earth’s horizon, the gravity vector, or the
earth’s magnetic flux density vector. With regard to satellite attitude, the horizon tracker,
star tracker, sun tracker, and magnetometer are sensors commonly used in this

application. One way to compute the attitude from a pair of vector measurements, for
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example the gravity vector and earth’s magnetic flux density vector, is to use the Three-
Axis Attitude Determination (TRIAD) algorithm [76, pp. 424] [77]. This algorithm is
very attractive because it is simple and straightforward to implement. It produces the

attitude matrix, C;. However, it is not derived from gyro measurements, as was

discussed previously. Instead, it uses vector measurements of two distinct references.

Consider a pair of vector measurements from a triad of accelerometers and
magnetometers, d°and m". Each vector has dimensions 3x1 and gives the relationship
to the reference axes, §"and m", where the former is the gravity vector expressed in the

navigation frame and the latter is the magnetic flux density vector given in the same

navigation frame. An orthonormal basis can be formed from the sensor measurements as

shown
a»b
b o b
a’xm
5, = 3.11
? \ab x mb\ (3.11)
S; =5, x5,
A similar basis set may be formed from the reference vectors, such that
_g"
h= g
o gn X mn
r,= o (3.12)
=0
The two basis sets are related to each other by
M, =C; M, (3.13)

where M =[5,,5,,5;] and M, =[F,,F,,T;]| are orthogonal matrices in R°®. Because of

this fact, M;* = M{ and the above equation is solved by
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Cl =M M. (3.14)

A shortcoming of this algorithm is that it can only accommodate two vector
measurements. When more than two vector measurements are available, such as might
be the case when additional sensor types are used, they must be combined in pairs in a

cumbersome manner.
2. QUEST Algorithm

The TRIAD algorithm gives the orientation in the form of the direction cosine
matrix. However, as was discussed previously, the quaternion offers some benefits in
terms of computational efficiency. Another algorithm often used in this class of methods
is the QUaternion ESTimator (QUEST) algorithm. It gives the attitude in the form of the
quaternion, and unlike the TRIAD algorithm, is able to process N >2 vector
measurements. Furthermore, it is an optimal algorithm because it seeks to maximize the

gain function

9(q)=9'Kq (3.15)

with respect to the quaternion, g, where K is a 4x4 matrix that has been constructed

from the N measurement vectors and N reference vectors [77]. To find the optimal

quaternion requires the computation of the eigenvectors, {ql G, G, q4}, of K.
However, the optimum quaternion, g, is the one associated with the largest eigenvalue,

A, of K. The matrix K is found by the following sequence of steps [78]:

a. Compute the 3x3matrix D where
N T
3[33 - iZ:l:Wi Vi

Since we only have N =2 vector measurements in the present application,

W, =4a" and Wi, = m" are the vector measurements of gravity and magnetic flux density in

the body frame. The reference vectors V, are defined as V,=g§ and
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is the magnitude of

cosp O

;
sin ﬂ} in the navigation frame, where

v, =|
the earth’s magnetic flux density and £ is the local angle of inclination.
b. Construct the matrix S =D" + D
C. Z=D"-D

d. Obtain the vector Z from the elements of the skew symmetric matrix
Z such that

Z= [232 Zj3 Z21]'

e. o =trace(D).
f. Construct the 4x4 matrix K,
S-loc 7
K — 3x3 3x1
4xh 77 o
1x3 Ix1

The QUEST algorithm proceeds with the finding of the eigenvalues and eigenvectors of

K. Interestingly, as noted in the reference, for the special case N =2, the optimum

quaternion, g, is equivalent to the attitude matrix, C,', which results from the TRIAD

algorithm.
3. FQA Algorithm

More recently, an alternative to the TRIAD and QUEST algorithm was
introduced. The Factored Quaternion Algorithm (FQA), while not optimal, provides
some attractive features. For one, unlike the TRIAD, the FQA produces a quaternion.
Another feature of the FQA is that it uses magnetic vector measurements only for the
computation of the yaw angle. Any errors present in this measurement are not coupled

into the roll and pitch angles [79]. Furthermore, the FQA was shown to give similar
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performance to the QUEST at a reduced level of computational effort. It achieves this by
avoiding the use of trigonometric terms, which tend to increase the computational burden
of an algorithm.

The algorithm computes three distinct quaternions—each one corresponding to
the rotation about one of the principal axes. More to the point, the algorithm is rooted in
the fact that any orientation can be decomposed into an ordered set of rotations about the
principal axes of the reference (navigation) frame [80]. A final step of the FQA is to
multiply the three principal quaternions to yield a total or composite quaternion that

describes the complete three-dimensional orientation of the body as shown

q = qYaw qPitch qRoII * (316)

The roll and pitch quaternions are computed form the acceleration vector measurement,

while the yaw quaternion is computed from the magnetic field vector measurement.

Given the normalized gravity vector measurement, ab:[af,aty’,afjwhere

‘éb‘ =1, the pitch quaternion has the form

cos4
0
Opitch = sin 2 (3.17)
0
where
sin£ = sgn(sin §),/(1-cos8)/2 (3.18)
cosZ =,/(1+cosd)/2 |
and
sinf=a)
(3.19)

cosd =+/1-sin’ 4.
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It is noted that in the equations provided above, the sine or cosine of the angle is
never actually computed. Beginning with the value for siné, it is carried through the
remaining expressions until the two half-angle terms are populated in the elements of the
pitch quaternion. In this manner, the FQA achieves a reduction in the amount of

numerical computations.

The roll quaternion is computed in a similar manner, but it accounts for any

rotation in the pitch angle. This quaternion has the form

cos$
sin%
Qo = 0 ? (3.20)
0
where
sin = sgn(sin ¢),/(1— cos ¢)/2 321
cos% =,/(1+cosg)/2 |
and
sing=—-a° /cos @
¢ i/ (3.22)

cos¢=—a’/cosé.

Next, the FQA computes the yaw quaternion using the magnetic field
measurement.  First in this part of the computation is to determine the horizontal
components of the magnetic field vector measurement. This is done using the previously

computed pitch and roll quaternions

mn = qPitCh qRoII mb ql:oll q;’itch (323)

where m"and m°are expressed in the form of pure quaternions, that is

m'=[0 m; mj m!] and @M =[0 m; m) m?]. After normalization of the

resulting vectors, the yaw angle, y, is related to the horizontal components of the
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magnetic reference vector, [NX Ny], and the corresponding components of the

magnetic measurement vector, [MX My] by

cosy | M, M, |IN,
el W] 620

In the above equation, [N, N, |=[1 0] and [M, M, |=(m] m;)/ (m”)2+(m“)2.

X

Lastly, the yaw quaternion is given by

Oy = . (3.25)

AV
sin%

In a fashion similar to the roll and pitch quaternions, cosy and siny are related to the

elements of the yaw quaternion through the half-angle formulas used previously.

The FQA uses vector measurements from the accelerometers and magnetometers.
The TRIAD and QUEST algorithms would use these same vector measurements, if they
were to be used in this application. Because of this, these algorithms require accurate
measurements from these sensors. For the magnetometers, it is widely understood that
errors can be introduced into the corresponding measurements due to magnetic
disturbances. Examples include electric machinery and electronics which generate their
own magnetic fields and add to the earth’s magnetic field. This type of interference is
known as hard-iron interference. Other examples include metallic objects, which do not
generate magnetic fields but can cause local variations in the magnetic field. Not
surprisingly, this is referred to as soft-iron interference [81]. As mentioned earlier, an
attractive feature of the FQA is that it isolates these unknown and unpredictable errors

from the pitch and roll angle computations.

In the absence of magnetic field interference and under static (or quasi-static)
conditions the FQA will produce an accurate attitude quaternion. However, if the sensor
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body is accelerated, then the accelerometers will measure this acceleration in addition to
the component of the gravity vector. This latter component of the acceleration
measurement corresponds to the desired body orientation, but the former contributes an

unknown error into the FQA and to the resulting attitude quaternion.

C. QUATERNION-BASED COMPLEMENTARY FILTER

In the previous sections, several examples of algorithms were presented for the
computation of attitude. These algorithms were classified into two categories: those that
were based on angular rate measurements, which involved the solution of a dynamic
differential equation, and those that were based on angular measurements relative to two
or more reference axes.

In the present section, an alternative solution is presented, one that incorporated
both types of algorithms in the form of a complementary filter. As will be shown in the
remainder of this chapter, this architecture combined the attributes of both types of
algorithms, which in turn, helped to mitigate the inferior performance of the MEMS-
based IMMU.

Our proposed complementary filter had the architecture shown in Figure 25. The
filter blended a quaternion computed with the FQA (static branch) and another that was
computed using the angular rates (dynamic branch). The filter gain, k, had the effect of
adjusting the weight of either branch that was used in the final computation of a given

quaternion estimate, ¢(t). During each iteration of the filter loop, an error, e(t), was
computed, which was the difference between the most recent quaternion computed with
the FQA, q,(t), and the estimate, q(t), that had been computed during the previous filter
loop iteration. In the dynamic branch, a quaternion rate, q,(t), was computed from the

angular rates and combined with the error. The resulting differential equation was solved

numerically to yield the most recent estimate of ¢(t). More details on the operation of

the filter will be presented in the following subsections.
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Figure 25.

Quaternion-based complementary filter.

D. FREQUENCY RESPONSE OF THE COMPLEMENTARY FILTER

The filter gain, k, played an important role in the performance of the
complementary filter. As will be shown, it determined the weighting in the filter’s output
of one branch over the other. In order to begin this discussion, the complementary filter
was redrawn in the frequency domain, as shown in Figure 26. This was done to derive a
transfer function of the filter and facilitate analysis of the frequency response, which in

turn, would reveal the true action of the filter gain within the system. In the figure, Q,(s),

is the quaternion derived from the FQA, and Q,(s)is a quaternion computed from the

angular rates.
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Figure 26. Complementary filter in the frequency domain.

First, we seek to derive the transfer function for the static branch. Applying the

principle of superposition and neglecting the filter input from the dynamic branch, we get

expressions for E(s) and Q(s) , as shown in (3.26) and (3.27)
E(s) = k{Q,(s)-Q(s)} (3.26)

3(s) = % E(s) (3.27)

Substitution of (3.26) into (3.27) and rearranging terms yields the desired

transfer function for the static branch of the complementary filter

@:L (3.28)
Q.(s) s+k '

In terms of the magnitude frequency response, M (@), and the phase frequency

response, ¢,(w), for the static branch we have that
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Figure 27 and Figure 28 show M (w)and ¢,(w) for three different values of gain

(plotted in blue). The horizontal axis on these plots are in terms of frequency (rad/sec),
but can be thought of as the rate of change of the input orientation or true quaternion.

M, (w) has a low-pass response, which suggests that as the rate of change of the input

orientation increases, the static branch would tend to attenuate this signal and not

reproduce the true desired orientation. Moreover, we also note that ¢, (w) increases from
zero to —x/2 as the orientation rate of change increases. Thus, there exists a phase
difference of —x/2 between the input and output of the static branch at high input

frequency.
Turning our attention to the dynamic branch, we once again apply the

superposition principle, but this time we ignore the input, Q.(s). Expressions for E(s)
and Q(s) are given by
E(s) = —kQ(s) (3.31)

é(s){(st (5)+E(S)) (3.32)

Substitution of (3.31) into (3.32) and rearranging terms produces the transfer

function for the dynamic branch of the complementary filter:

Q) _ s (3.3
Q,(s) s+k '
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The magnitude frequency response, M, (w), and the phase frequency response,

@, (@), for the dynamic branch are

Aio) o
M, (@) = i = 3.34
@) Qs (j®)  Vao? +K? (839
b (@) =209 _ ity s(jwk)

£Q,(jow) (3.35)

=%—tan’1(%)

Figure 27 and Figure 28 show these responses for the dynamic branch for three
values of gain (shown in red). We see that the magnitude response, M,(w), of the
dynamic branch has a high-pass response, which suggests that this branch would be
appropriate for tracking orientation in situations where the attitude tended to change
rapidly. The phase frequency response, ¢, (@), reinforces this idea about the ability to

track rapidly changing orientation because we see that the phase change approaches zero
as the input frequency increases.
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Magnitude Response for Complementary Filter
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Figure 27.
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Phase Response for Complementary Filter
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Figure 28.

With the superposition principle in mind, we have that the output of the

complementary filter is the sum of the static branch and the dynamic branch transfer

functions, such that,

(3.36)

Q,(5) + ——Q,(K)
s+k

S
s+k

Q(s)

which are computed from the angular rates

If we assume that Q,(s)and Q.(s)

and the FQA, respectively, are in fact equal to the true quaternion, Q; (s), then we have

(3.37)
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Therefore, our complementary filter has an overall transfer function of unity or an
all-pass response. There will not be any input frequency that is preferentially attenuated
in our complementary filter, and the phase of the output will be zero over all input
frequencies. These characteristics make the complementary filter suited to those
applications where a high-frequency measurement is to be blended with a low-frequency
measurement of the same process or physical quantity.

Before concluding this discussion on the frequency response of the
complementary filter, it is worthwhile to make one more examination of the frequency
response plots. Figure 27 shows the magnitude frequency response for k = 0.01, 0.1, and
1. From the plots we see that the gain is not only the corner frequency for the individual
branches in the complementary filter, but can also be thought of as a crossover frequency
for the filter—the point where the magnitude response in both branches are equal. The
plots serve to illustrate the concept that as the gain is increased, this crossover frequency
also increases. Consequently, the total output of our complementary filter has a

correspondingly larger portion derived from the static branch or Q,(s). Conversely, as

the filter gain is decreased, the output will be weighed more greatly by the quaternion

derived from the dynamic branch, Q,(s). In this fashion, the complementary filter can

be tuned to allow a greater or lesser amount of its output to be influenced by one branch
or the other.

E. ERROR ANALYSIS OF THE COMPLEMENTARY FILTER

With a preliminary understanding of the complementary filter and in preparation
for the filter performance analysis to be presented later, it is timely to consider the
relationship between the filter output and the sensor errors, which are certain to be found
within the accelerometers, magnetometers, and angular rate sensors. For this analysis,
the sensor errors are assumed to be small and constant over the time period of interest,
generally less than one second. These errors have a variety of sources including
variations in scaling coefficients over time, misalignment of the individual sensors, cross-
coupling between sensor axes, temperature dependence of the scaling coefficients, g-
dependent variations in gyro sensitivity, just to name a few of these factors.
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1. Filter Performance Due to Gyro Error

The error analysis begins with the angular rate sensors. Measurements,

{@4, @y, @y, ), are expressed as the sum of the true angular rate, {,,, @,,, @, |, and the

SeNsor error, {8w,,,5m,,, 6w, } as in

a)xb = a)xb + §a)xb
@y, = Oy + 00, (3.38)

a)zb = a)zb + 5a)zb

The dynamic three-dimensional attitude is derived from these measurements by

the differential equation

G, (1) = 2Q(@) G, (t) (3.39)

where Q(®) is the skew-symmetric matrix formed with the angular rate measurements

such that
0 — Oy _a)yb — Wy,
D 0 -0, o
~ b b b
Qo) =| " . ‘ 2. (3.40)
a)yb Wy, 0 —OWy
Wy _a)yb Wy, 0

Substituting (3.38) into (3.39), we have that

Gy (1) =1 Q() G, (1) + $Q(d0) G, (1) (3.41)
=d,(t) + 6Q,

The first term on the right hand side of (3.41) is the true dynamic rate quaternion that is

derived from the error-free component of the angular rate measurements. The second

term is a constant in the expression for the quaternion rate; it comes from the small

constant sensor error in the angular rate measurements. Next, assuming zero initial

conditions, we take the Laplace transform of (3.41) and have that
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s, (5) = 5Q, (5) +% (3.42)

Referring to Figure 26 and deriving the transfer function for the complementary
filter output as was demonstrated in the previous section with (3.42) as an input, we have

that the filter output is

Q) = Q) + ——Q() S 09,
s+k 2
(3.43)
_ s ko 1.5,
B s+de(s) * +kQS(S) " s+k s

If we have that Q,(s)and Q,(s)are equal to the true quaternion, then the filter output

becomes

1 6Q,

Qs) = Q; (s) Tk

(3.44)

The last term in (3.44) is the error in the filter output that is due to the small
constant error assumed in the angular rate measurements. Applying the inverse Laplace
transform to this term, we have that the error response in the complementary filter output

due to the errors in these measurements is

error,, (t)= ~ A{Sik 5?”} = 5% (1-e™) (3.45)

This last result indicates that the error in the complementary filter output is related

to the constant error in the angular rate sensors, 6Q_, and inversely proportional to the

!

filter gain. A non-zero gain will give an error that settles to a nominal value of
6Q, /k after approximately five time constants or 5/k seconds. Furthermore, as (3.45)
suggests, the error can be reduced by choosing k sufficiently large. However, as will be
explained in a later section, it is not a simple matter of making k large in the
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complementary filter to control the effects of the angular rate measurement errors. When
k is large, the filter relies more greatly on the static quaternion, which in turn, is derived
from the accelerometer/magnetometer measurements. These sensors, not surprisingly,
come with their own set of errors that must be considered in some way.

Lastly, we consider the case when k = 0 in (3.45). In this situation, the
complementary filter output depends entirely on the angular rate measurements.
Expanding the exponential term with the Taylor series gives

5Qa, (1—ekt)_%{l—{l—kt+ﬁ_ﬂ+“}}

k 2! 3!
(3.46)
2 3
k 2! 3!
Neglecting the terms in (3.46) that have power >2 gives
oerror, (t) =0Q,t (3.47)

This last result indicates that when k = 0 in the complementary filter, there will be a
linearly increasing error at the filter output due to the small angular rate sensor error.

2. Filter Performance Due to Accelerometer Error

Next, we turn our attention to the static quaternion that is derived from the FQA
and consider the impact of small constant errors in the accelerometers and magnetometers
of which there are three each. Within the FQA, the accelerometer measurements are used
to compute the pitch and roll angles of the orientation, while the magnetometers are used
to compute the yaw angle component. These angles are each cast into a quaternion form,

such that q,,,, Opin» @Nd Qg CONtain the yaw, pitch, and roll angles, respectively. A

final step in the FQA is to multiply these quaternions to give the complete orientation as

shown

qs = qYaW qPitch qRoII (348)
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To begin the analysis, it is assumed there is a small constant error in the x"—axis

accelerometer, such that

a =a’+oa° (3.49)

The remaining sensors are assumed free of any error in the ensuing analysis.

After [79], the pitch angle, 6 is related to the x"—axis acceleration by

a’ =siné (3.50)

Furthermore, we have that §=60+50, and using the familiar trigonometric

identity sin(x+y) =sin xcosy+cos xsiny, (3.50) becomes

a’ = sin(d+56)

. ) (3.51)
= sin @ cos 08 + cos &sin o6

We expect that a small accelerometer error,5a’, will lead to small angular

error, 00 . Additionally, when 68 is small, cosé6 ~1and sin o6 ~ 60, which simplifies
(3.51) to
a> ~sin@+o0cosd (3.52)

Lastly, taking (3.49) and (3.52) into consideration we have that

a’ =sing (3.53)

oa’ = 50cosf (3.54)

Eq. (3.53) simply states that the error-free part of the acceleration measurement

goes into computing the true pitch angle, while (3.54) relates the accelerometer error to

the resulting pitch angle error. With this understanding of how 5a’ introduces error into
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the computed pitch angle, we seek to explore its impact on g, and ultimately on the

static quaternion, q,. First, we write the pitch quaternion as

9 0+56
COs 5 Ccos +T

A 0 0
= = 3.55
qPItCh Sin% Sln 9259 ( )
0 0

Next, expanding cosine and sine terms with a first-order Taylor series, we have
that

coss | |—%Lsing
— 0
Apran = sin? | | %cos¥
0 0
(3.56)
= Opieen +5qpitch

We recognize that the first quaternion in the right hand side of (3.56) is the true

pitch quaternion and that the second is an error quaternion that comes from the pitch

b
X

angle error, 66 . Since we have in (3.54) that the 66 is related to oa, , then we can infer

that &qs,,, arises from the small accelerometer error that exists in &’ .

The last step in this portion of the analysis is to establish how &qp,,, manifests
itself in the static quaternion. Starting with (3.48) and substituting (3.56) into this
expression gives

Gs = Ovaw (Apicn + O ¥picn) Aot

= qYaW qPitch qRoII + qYaw é‘qPitch qRoII (357)
=0, +0Q,

Eq. (3.57) shows that the output of the FQA is composed of the sum of a true
static quaternion, g, and an error quaternion, 5Q,. This latter component is directly the
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result of the small accelerometer error,5a’ , introduced at the beginning of this analysis.

Since sa. was assumed to be a constant in this analysis, then 5Q, will also be a constant if

we make the additional assumption that there is no rotation in the roll and yaw angles.

Taking the Laplace transform of (3.57) we have that
2 0
G9-Q()+2 (356)

Turning to the frequency domain representation of our complementary filter in
Figure 26, and applying (3.58) as an input to the filter, we have that the output of the
filter is now given by

O(s) =—2—Q, (5) + ——Q, (s) + —— 2% (3.59)
s+k s+k s+k s

Once again as before, assuming that the Q,(s)and Q.(s)are equal to the true

quaternion, then the filter output becomes

() =Q, () + L% (3.60)

s+k
The last term in (3.60) is recognized as the error in the quaternion output of the
complementary filter. Taking the inverse Laplace transform of this term gives the time-
domain representation of the error
errory, (t) =5Q,(1-e™) (3.61)
This result indicates that the error in the complementary filter output due to small

sa’ settles to a steady-state value after approximately 5/k seconds. Furthermore, this

result differs from (3.45), which described the filter error in terms of the gyro error, ow ,
in that the magnitude of the error does not depend on the filter gain and therefore can not

be minimized or affected by a proper selection of k.
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F. MATLAB IMPLEMENTATION

The complementary filter shown in Figure 25 represents the architecture of a filter
in continuous time. However, this filter can not be directly synthesized on a computer.
Instead, to permit analysis in MATLAB, the filter was programmed as shown in Figure

29. The filter loop began with an initial estimate of the quaternion, §(n-1), which was

computed from the static acceleration and magnetometer measurements using the FQA.

For the initialization to be as accurate as possible, it was essential that q(n—1) be

computed when the subject was stationary. It was during those times when the FQA was
known to yield a reliable orientation estimate.

The algorithm then proceeded with the computation of a static quaternion, again
using the FQA. The next step in the iteration was to compute the error signal
incorporating the desired filter gain. The third step in the filter loop computed a dynamic
quaternion rate using the three-dimensional angular rate. The dynamic quaternion rate
and the error signal were then added in the subsequent step to produce another quaternion
rate, which was the rate of change of the quaternion we wish to estimate. Finally, using a
numerical integration technique, such as Euler’s method, the estimated quaternion was
derived. This result was then used to initialize the filter loop in a recursive fashion to

produce the next estimated quaternion.
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Begin
Complementary
Filter

.

g, (n) = fqa(a(n),m(n))

h 4

e(n) =k*[g,(n)—-G4(n-1)]

\4

4, (n) = %Q(w(n»*a(n =)

|

§'(n) =e(n)+qq(n)

l

G(n)=a'(n)*AT(n)+d(n-1)

Use accelerometer, magnetometer
measurements in FQA to get static
quaternion

Apply filter gain, k

Use angular rates to get dynamic
quaternion

Compute the estimate of the
quaternion rate

Use Euler's method to integrate previous
result

Figure 29.

Flow chart for MATLAB implementation of the complementary filter.
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G. A MODEL FOR PENDULUM MOTION SENSOR DATA

The previous section described how the complementary filter was programmed in
MATLAB. In the present section, we introduce a model of the vertical pendulum. The
purpose of this model was to generate data to aid in the study of the performance of the
complementary filter. In this synthetic pendulum, we consider a sensor module, like the
3DM-GX1 for example, to be attached at the swinging end. Expressions for the sensor
data were derived that described what the output of each sensor would be once the
pendulum was set into motion. In this manner, all of the real-world sensor artifacts, such
as gyro bias, accelerometer offset, and motion-induced acceleration, which undesirably
influenced the orientation estimate, could be controlled and examined in this simulated

experiment.

1. Pendulum Model for MATLAB Simulation

Figure 30 shows the pendulum with length, L; mass, m; viscous damping, c; and
angular displacement,#. The coordinate system, <xb & z”>, shown at A coincides with
the sensor body coordinate system, where the y® axis is not shown because it is directed
orthogonal to the <xbzb> plane and projects inward into the plane of the paper. The axis
of rotation for the pendulum lies along the positive y° axis, such that a positive rotation is
in the clockwise direction.

Summation of the forces acting at point A along the x"axis gives the dynamic

equation

Y F, =mLé =-mgsin6o—co (3.62)

Equation (3.62) is a non-linear second-order differential equation. An analytical solution
is not straightforward, but using one of MATLAB’s solvers for ordinary differential

equations, such as, ode45( ) for example, a numerical solution can be easily determined.
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gravity

Figure 30. Pendulum model for MATLAB simulation.

With the parameters for our pendulum defined as L = 1 meter, g = 9.81 m/s>, m =
1 kg, ¢ =0.313 N-sec, and initial conditions 6(0) =10° , 6(0) =0, the pendulum angle
with respect to time, along with the angular velocity and angular acceleration are shown

in Figure 31.
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Simulated Pendulum
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Figure 31. Pendulum motion with #(0) =10°, L = 1 meter, g = 9.81 m/s®>, m = 1 kg,
and ¢ =0.313 N-sec.

2. Sensor Data Generated with the Pendulum Model

The previous section provided the pendulum’s angular displacement, velocity,
and acceleration. Next, we consider a sensor module, such as the 3DM-GX1, attached to
point A of the pendulum. Recall that the sensor module was equipped with three
accelerometers, three magnetometers, and three angular rate sensors. In this section, we
seek expressions that describe each of these sensor outputs when the module is stimulated
by the pendulum motion. Given these expressions for the sensor data outputs, we will
have a well understood set of data that can be used in the study of the complementary

filter.
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First, we consider the accelerometers. In the 3DM-GX1, there were three
orthogonally mounted accelerometers. When the pendulum is stationary at some angle,
6, the three accelerometers sense a component of the gravity vector that is projected onto

each of the sensor body axes,

g, =—9sind
9y =0 (3.63)
g,, =gcosé

Under static conditions, the accelerometer outputs would be solely comprised of
the gravitational acceleration, and (3.63) could be used to compute the pendulum angle.
However, when the pendulum is in motion, the accelerometers at point A sense an added

acceleration due to this motion. There will be a centripetal (normal) acceleration directed

toward the center of rotation and coincident with the z"axis. Additionally, there exists a

tangential acceleration orthogonal to the centripetal acceleration that lies along the

x" axis. Therefore, (3.63) will not suffice to describe the accelerometer outputs correctly.

To determine how the accelerations due to motion combine with the acceleration
due to the gravity vector, we consider a simple model of the accelerometer, as shown in
Figure 32. The simple model has a proof mass, m, suspended in a case by a spring with a
spring constant, k. Although not shown in the figure, there is also a viscous damping
with a constant coefficient, c. When the proof mass is accelerated due to some externally
applied force, it will be displaced by an amount, x, relative to the case structure. This
displacement will be proportional to the applied force and the corresponding acceleration.
By means of an indirect measurement of this displacement, the accelerometer then makes
available to the user the value of the applied acceleration. However, the influence of

gravity on the proof mass must be taken into consideration.
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1 17

(a)

Figure 32. Accelerometer model. (a) Simple mass and spring model, and (b) free
body diagram of the accelerometer proof mass.

Figure 32 also shows the free body diagram of the proof mass suspended within
the accelerometer case and the following equation accounts for all the forces acting on
the proof mass:

D F. =ma=mg—kx—Ccx (3.64)
Dividing (3.64) by the proof mass, we have an expression in terms of the acceleration

a:g—hx—ﬁx (3.65)

Furthermore, we recognize that the accelerometer produces at its output a value that is

proportional to x, so we define f as the accelerometer output, and we have that

(3.66)



Substituting (3.66) into (3.65), we have an expression that gives the dynamic output of

the accelerometer in terms of the applied acceleration, a, and the gravity, g,
C .
a=g+f+Ef (3.67)

To conclude the analysis of the accelerometer, we take the Laplace transform of
(3.67) to get

A(s) = G(s) + F(s)+EsF(s) (3.68)

Rearranging (3.68), we have the accelerometer output as

A(s) _ G(s)
1+¢s 1+¢s

F(s)= (3.69)

Next, regarding the applied acceleration and the gravity as step inputs into the
accelerometer for t > 0 such that
s HAG)]=au(t)

. (3.70)
77HG(s)] =g u(t)
then, if we apply the Laplace final value theorem to (3.69), we have that
a 9
f(0) =limsF(s)=lims| ————=
50 >0 | 1+8&s 1+Es (3.71)

Thus, we conclude that the accelerometer output is equal to the difference
between the applied acceleration and the gravity vector. For the case of the triad of
orthogonally-mounted accelerometers, (3.71) is tailored to the situation when only a
component of the gravity vector is aligned with the sensor body axis. Therefore, (3.71)

becomes the set of equations
81



fxb = axb - gxb
fyb = ayb - gyb (372)
fzb = a'zb - gzb

Finally, substituting (3.63) into (3.72) and accounting for the centripetal
acceleration and the tangential acceleration of the pendulum, we have the accelerometer

outputs given by

f,=LO+gsind

X

fyb =0 (3.73)
f,=-L8" —gcoso

Eq. (3.73) provides the accelerometer outputs for the pendulum motion within the earth’s
gravity field. Conveniently, the accelerometer outputs are expressed in terms of the
pendulum angular displacement, angular velocity, and angular acceleration.

Next, we consider the three angular rate sensors. Since the pendulum was

constrained to swing in the x°z° plane, then only the angular rate sensor aligned with the

y° axis would sense any rotation. The angular rate sensors oriented along the x”axis and

the z"axis would not sense the pendulum’s movement. Thus, we have that for the angular

rate sensors, their outputs would be as

@ =0
@, .y’ (3.74)
w,=0
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Finally, we come to the magnetometers. These sensors measure the component of
the earth’s magnetic flux density that has been projected onto each of the sensor body
axes. To simplify this part of the pendulum model, we consider that the plane of motion
of the pendulum is aligned with magnetic north. Doing this simplifies the analysis of the

magnetometers. Figure 33 examines this aspect of the pendulum model. In the figure,

ny,Nn,n

the earth referenced coordinate system is shown as <x y'z > The vector, B,, is the

earth’s magnetic flux density, which makes an angle, £, with the x"axis; it is commonly
referred to as the angle of inclination. This vector is known to vary both in magnitude
and direction around the globe, however, for the local area, the values of B, = 0.486 gauss
and S = 60.483 degrees were noted from the National Oceanic and Atmospheric

Administration (NOAA) Web site. Finally, referring again to Figure 33, we derive the

following expressions for the magnetometer sensors:

m, =|B,|cos(B+06)
m, =0 (3.75)
m, =|B,|sin(3 +6)
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Figure 33. Magnetic flux density vector relative to the sensor body axes (x°z°) and
the navigation frame (x"z").

With expressions for all nine sensors in hand, the next step was to generate
simulated pendulum motion data and insert this synthetic data into our complementary
filter. If the complementary filter was to work correctly, then the filter would produce

the pendulum motion as described by our simulation model.
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3. MATLAB Plots of Simulated Sensor Data

Given the expressions for the sensor outputs in (3.73), (3.74), and (3.75), the next
task was to use these equations to generate synthetic sensor data. A MATLAB script was
written that produced the synthetic sensor data set using these equations. A time
increment was chosen to give an approximate sampling rate of 50 samples per second—
similar to that provided by the 3DM-GX1. The script produced an array of incremental
time and sensor data samples; it then saved the array in a data file called SimData.mat.
The format of the data file was similar to that which was normally generated using the
actual 3DM-GX1 sensor, except that the quaternion was not included here. Each row in
the array corresponded to a sample time and the relevant sensor data from that sample
time instant. The accelerometer sensor data was computed with (3.73) as shown in
Figure 34. Figure 35 shows the angular rate sensor data that was derived from (3.74).

Lastly, Figure 36 shows the magnetometer data generated with (3.75).

Acceleration
0.02

a, (©)

I

1

8 10 12 14 16 18 20
time (sec)

-1.05
0

Figure 34. Simulated accelerometer data from the pendulum model.
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Angular Rate
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Simulated angular rate data from the pendulum model.

Figure 35.



Magnetic Flux Density
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Simulated magnetometer data from the pendulum model.

Figure 36.
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H. COMPLEMENTARY FILTER STUDY WITH SIMULATED PENDULUM

Leading up to this point, we have modeled the sensor outputs of the 3DM-GX1
attached to point A of the vertical pendulum. With the corresponding sensor data now
available, we were able to begin a study of the performance of the complementary filter.
The filter algorithm was programmed in MATLAB as shown in Figure 29. To begin

iteration of the filter, we required an initial value for §(0) and to set the filter gain, k, to

some desired value. Using the FQA, §(0) was computed using {fxb (0) fyb ©) f, (0)} and

{mxb (0) m, ©)ym, (0)} , Which were derived with (3.73) and (3.75). For k=0, the
complementary filter only weighs the angular rate measurements in its output, neglecting
g, (t) that was derived from the FQA. This was considered a good starting place to begin

looking at the filter performance. Figure 37 shows the output of the complementary filter

for the case k =0. It shows the individual elements of the quaternion, q(t). However,

since the performance of the filter is difficult to interpret by inspection of the quaternion,

g(t) was converted into equivalent Euler angles and the result plotted in Figure 38.
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Quaternions
1.001 1
1 0.5
0.999
0
0.998
0.997 % 0.5 %
0.996 : -1 |
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1
0.5
0
-0.5 ds
0 5 10 15 20 0 5 10 15 20
Time (sec) Time (sec)

Figure 37. Complementary filter output for k = 0.
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Euler Angles
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Figure 38. Complementary filter output (red) shown in Euler angles, k = 0. True
pendulum angle (blue). No difference between true angle and computed angle.

Figure 38 shows that the complementary filter (red) with k =0 accurately tracks
the true pendulum angle (blue) as given by the simulation model. Since there was no
difference between the true pendulum angle and that computed by the complementary
filter, the curves are shown superimposed in the pitch plot. The computed pitch angle
reproduced all of the features of the true pendulum motion from the initial value of

¢ =10 degto the end of the simulation period. The complementary filter also computed

zero for the roll and yaw angles because there was no movement in those axes.

This example assumed ideal angular rate sensors that did not have any noise or
bias in their output. In practice, however, all angular rate sensors possess some amount
of error in sensitivity and bias. Therefore, to examine these types of sensor errors, we
introduce a small bias error into the angular rate sensors. Microstrain specified in their
documentation a 0.033% bias error for the 3DM-GX1. This value was used to create a

new set of pendulum sensor data as described in the previous section. The
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complementary filter algorithm was repeated using the new sensor data to produce the
pendulum angles shown in Figure 39. This figure reveals the effect of the small bias
error on the computed angles when k = 0. The pitch angle tracked the true angle during
the first few cycles, but began to drift away from the true track towards the end of the
motion period. Where the roll and yaw angles were zero in the previous example, they
now exhibited an error that grew without bound. This result is consistent with the error
predicted in (3.47). With k = 0, the error due to the small angular rate sensor error is
unbounded. However, if the filter gain were to be increased, then the error is expected to
be contained to within some constant value. The next example explores this idea in more
detail.
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Figure 39. Complementary filter output with small bias error in angular rate sensors
and k = 0.
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Next, we consider the performance of the complementary filter due to the FQA.

For this example, the gain will be set to a value that weighs the static branch more greatly

50.

With this particular gain value programmed in the complementary filter, the pendulum

than the dynamic branch. Figure 40 shows the magnitude frequency response for k

angle, which has a radian frequency of 3.128 rad/sec, is computed mainly from the FQA.

At this frequency, the dynamic branch is attenuated by more than 20 dB. Thus, its

contribution to the filter output is suppressed more than 100 times than that of the static

branch.
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branch (blue), dynamic branch (red).
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Using this gain value, the complementary filter output is examined in Figure 41.
The roll and yaw angles show a small error on the order of 0.002 degrees. This is the
result of the small bias error introduced into the angular rate sensors. Furthermore, it is
noted that the error does not seem to grow in time as it does in Figure 39. But instead,
the error remains constant throughout the period of the pendulum motion, as indicated by
(3.45). Lastly, the figure also shows the pitch angle of the pendulum. Examination of
this plot shows that the complementary filter (red) is not able to track the true pendulum
angle (blue). However, this is not due to the filter algorithm, but is an artifact of the
accelerometer measurements which not only sense the acceleration due to gravity, but
also have the response due to the centripetal and tangential acceleration, see (3.73).

x 10~ Euler Angles
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Figure 41. Filter output (red) with k =50. True pendulum angle (blue).

93



To explore this last notion in greater detail, the simulated pendulum data was
generated once again, however the centripetal acceleration and tangential acceleration
were omitted from the expressions for the accelerometer output, see (3.73). With this
new data provided to the complementary filter, Figure 42 shows that the static branch
does give an accurate orientation when it is given accelerometer measurements that are
comprised only of acceleration due to the sensed gravity vector. As seen in the figure,
the true pendulum angle (blue) and the complementary filter angle (red) are
superimposed in the pitch angle plot. Interestingly, the roll angle shows a small
oscillation where none had existed previously. This is explained by considering the
tangential acceleration. Coincidentally, it oscillates in a similar fashion, but with an
opposite phase. When both components of acceleration are accounted for, as they are in

Figure 41, the oscillation cancels and only the error due to the gyro bias persists.
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Figure 42. Filter output (red) with k = 50. Tangential and centripetal acceleration
omitted from accelerometer measurements. True pendulum angle (blue).
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Figure 42 illustrated that the source of angular error in the FQA is due to non-
gravitational accelerations. Practically speaking, however, the accelerometers respond to
any and all acceleration and are not capable of discriminating between those accelerations
due to the changing orientation and those arising from linear or rotational accelerations.
Thus, if the accelerometers are to be a part of the orientation sensing solution, some

means of mitigating the error in q.(t)that arises because of the non-gravitational

accelerations must be identified.

Continuing our study of the complementary filter performance, the situation for
pendulum motion with large damping is investigated. Here, the viscous damping is
increased to 5.95 N-sec to produce the pendulum motion shown in Figure 43. Comparing
this with the pendulum motion shown in Figure 31, which was the case for viscous
damping equal to 0.313 N-sec, we see that the pendulum moves much more slowly and
does not oscillate about the vertical. Next, the simulated sensor data is applied to the
complementary filter with k = 50. The complementary filter output is shown in Figure

44. Recall that this value of gain caused the filter to weigh g, (t) more greatly than g, (t),

as seen in Figure 40. The accelerometers have a response due to gravity, as well as, the
centripetal and tangential accelerations. However, since these latter accelerations are
smaller because of the pendulum’s retarded motion, the accelerometer outputs have a
larger component due to the sensed gravity vector. This in turn improves the filter’s
overall ability to determine the pendulum angle. The pitch angle error is less than two
degrees at t = 1 sec, and decreases to less than 0.2 deg at t = 2 sec. The error in the roll
and yaw angles was due to the small bias error introduced earlier into the angular rate
measurements. Furthermore, we note that the error does not grow in time, but remains

constant as shown in the figure.
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Figure 43.

96



x 10~ Euler Angles

4 : : : : : : : : : :
=) | | | | | | | | | |
q') | | | | | | | | | |
S 2 . , , ,

3 | | | | | | | | | |
o | | | | | | | | | |
O | | | | | | | | | |

0 2 4 6 8 10 12 14 16 18 20
C.F.j == Otrue

[y
o
— 7
I
I
I
I
.
|
I
I
I
I
M. S
I
I
I
I
|
-
I
I
I
I
J
|
I
I
I
I
———

Pitch (deg)
o

e e — Y,

Yaw (deg)
N

Time (sec)

Figure 44. Complementary filter output (red) with k = 50. True pendulum angle
(blue).

Up to this point, we have examined the complementary filter with filter gain
k=0 and k=50. To conclude our study of the complementary filter performance using
the simulated pendulum, the pendulum simulation was conducted once more, but this
time the filter gain will be set to a nominal value of k=1. This value was selected
without regard to optimizing the performance of the filter, but rather to examine the
performance at some intermediate value of filter gain. The pendulum viscous damping
is set to ¢ = 0.313 N-sec, which gives the pendulum motion shown previously in Figure
31. With this value of gain, the resulting filter performance is shown in Figure 45. The
roll and yaw angles have a constant error (after the transient response) on the order of 0.1
degrees, which is due to the gyro bias error that was included in the simulation. The
pitch angle error is at most 1 degree, but appears to track better than the case when
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k =50. An effort to optimize the error was not made here, as this will be done later, but

this exercise serves to illustrate the need for tuning of the filter gain to give desirable

performance.
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Figure 45. Complementary filter output (red) with k = 1. True pendulum angle
(blue).

Summarizing, the performance of the complementary filter algorithm depends in
large part on the value of gain, k, used within the filter. A small k will place a greater
weight on q,(t), so the filter output has a larger part derived from the angular rate
sensors. The ability of the filter to track the pendulum motion when this was the case
was shown to be adequate during the initial period of the pendulum motion; however, any
small bias errors in the angular rate sensor data results in an angle error that grows with

time. From this observation, we make the general statement that the filter gives
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acceptable results with small k when it is utilized over a small period of time—before the
error has grown beyond an acceptable level. Furthermore, we note that when the
pendulum motion contained relatively large centripetal and tangential acceleration, a
large k did not yield good angle tracking performance. But, a large k will give acceptable
filter results when the pendulum motion was low with small centripetal and tangential
acceleration, as was the case with large viscous damping. For this case, the filter tracked
the pendulum angle after a brief transient period, and in the steady state it was able to
maintain a small error. Additionally, the large k produced an output angle error that was
constant and did not grow with time. Moving forward, the challenge for the application
of the complementary filter is to identify a suitable value for k.

. FILTER PERFORMANCE WITH REAL PENDULUM DATA

The previous section described the performance of the complementary filter using
simulated data. The selection of the gain, k, was discussed with regard to its effect on the
ability of the filter to track the pendulum angle. In this section, we examine the
complementary filter using real sensor data from the 3DM-GX1. The performance is
compared against the pendulum angle measured with a 16-bit shaft encoder. To collect
the data from the real pendulum, a LabView program was developed that ran on a Dell
Latitude D620 laptop computer. It read the raw counts from the 16-bit shaft encoder, as
well as, the sensor data from the 3DM-GX1 attached to point A. Figure 46 shows a block
diagram of the data acquisition system. The LabView program controlled the operation
of the National Instruments USB-6501, which provided the necessary interface for the
eleven control/data lines of the A58 encoder. Additionally, the program read the sensor
data from the 3DM-GX1 through the laptop’s RS-232 serial communications port. All
the data was arranged into a time-stamped array, which was written to a data file on the
computer hard drive. Later, the data file was imported into MATLAB for processing and

analysis.
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Figure 46. Data acquisition system developed for the vertical pendulum.

The wvertical pendulum provided a good platform to investigate the
complementary filter performance. It was easy to change the length of the pendulum to
yield different natural frequencies, and the amplitude of oscillation could be made to
vary, as well. Numerous trials were conducted in the laboratory with the vertical
pendulum and the 3DM-GX1. Figure 47 shows the complementary filter output with the
pendulum length adjusted to 1 meter and the filter gain, k, set to 0.15. The computed
pitch angle (red) appears to follow the angle measured with the A58 encoder (blue) to
within two degrees. The roll and yaw angles exhibit an error of similar magnitude. The
blue lines shown in the roll and yaw plots coincide with the initial computed angles; it is
not an indication of an encoder measurement along those axes. The roll and yaw plots,
however, show some computed motion in these angles. Since the data acquisition system
does not provide a means for measurement of motion in these angles, it can not be
concluded with certainty that the angular error observed in the computed roll and yaw
angles is wholly due to the complementary filter algorithm. The pendulum shaft is made
of a wooden dowel and may exhibit some twisting and flexing when in motion.

Secondly, because no means for precise alignment of the sensor body axes with the
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pendulum axes was available, the motion observed in the roll and yaw axes may in fact
be due to a small pendulum alignment error. Therefore, some of the angular motion
observed in these plots may be accurate. On the other hand, the 3DM-GX1, as well as,
many other sensors of this type, possesses some degree of cross-coupling error.  This
error produces a sensor output in an axis normal to the axis of motion and is the result of
the sensor axes not being completely orthogonal. Overall, the computed angles are on the
order of two degrees from the expected angles and are certainly within the dynamic

accuracy specified by the manufacturer for their own proprietary quaternion algorithm.
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Figure 47. Computed angles (red) vs. expected angles (blue) of the vertical
pendulum, k = 0.15.

Figure 48 and Figure 49 compare the pendulum angles computed by the
complementary filter with those acquired directly from the 3DM-GX1. The pitch angle,
shown in Figure 48, indicates that the Microstrain algorithm is more accurate in this
particular case since the angle is shown to be within 0.5 degrees of the encoder-measured

angle. Figure 49 is similar to Figure 47, but it includes the angles derived from the
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Microstrain algorithm. Comparing the roll angle computed by Microstrain’s algorithm
and that from our complementary filter, we note that they have similar behavior. The
yaw angles differ somewhat, however, they both are within two degrees of the expected
angle shown in blue. Finally, comparing the pitch angle, shown in the center of the plot,
indicates that our complementary filter performs similarly to Microstrain’s algorithm

over the entire interval of motion.
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Figure 48. Pendulum pitch angle: Complementary filter with k = 0.15 (red), 16-bit
Encoder (blue), and Microstrain’s proprietary algorithm (green).

102



Euler Angles
0 ‘
=) I
) 2 P . f Ww\ I‘\ rﬁvﬂ/\k a AN A
= 27 T WWHL S Y e
i
_4 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
20 T T T
= - i N, C.F. Erf}‘cq\ ler Microstrain
I r‘\ i VA f ‘(} iy
E 0 N AN A A b
s |y e e
= Hy? IRIRIR IR
o vy Vuyy [ y ¥
_20 1 1 i 1 1 1 1 1
0 10 20 30 40 50 60 70 80
45 T T T
a ; Hﬁ f’\H;W i I\‘ H W Uf\/\ S
TR N | W W Y ]
Z 43 | Jp q e | 1
>_ \
42 | | | | | | |
0 10 20 30 40 50 60 70 80
Time (sec)

Figure 49. Pendulum pitch angle: Complementary filter with k = 0.15 (red), 16-bit
Encoder (blue), and Microstrain’s proprietary algorithm (green).

Before leaving this section, the question arises as to what would be a reasonable
value to use for the filter gain, k. The plots in Figure 47, Figure 48, and Figure 49 were
all generated with our complementary filter having k = 0.15. In order to arrive at this
value, several trials of the pendulum were conducted. The data from these trials were
then processed with a MATLAB script that varied the range of k from 0 to 1. For each
trial, the MATLAB script computed the total root mean square (RMS) angle error over
the entire period of motion. Figure 50 shows the RMS angle error for each trial.

The plot shows that when k =0, we have a large angle error. For this gain, the
filter uses the gyro measurements exclusively, and the bias errors of these sensors are the
source of the corresponding angular error. As the gain is increased from zero, then the
angle error decreases, as predicted by (3.45); however, it begins to increase after the gain
exceeds approximately 0.15. This is caused by the fact that more of the filter output is
weighed by the FQA as the gain is increased. Recall that the FQA relies on the
accelerometer measurements, which in turn measure the centripetal/tangential
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accelerations of the pendulum, as well as, the component of the gravity vector.

As a

result, the FQA introduces an ever increasing error into the filter output as the gain is

increased beyond 0.15. Therefore, for the plots shown previously, k = 0.15 was chosen

for use in our complementary filter.
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Figure 50. Selection of filter gain using real pendulum motion data.

This section discussed the performance of the complementary filter using data

that was collected from a vertical pendulum. The performance of the complementary

filter was compared with the angle measured by a 16-bit rotary encoder attached to the

pendulum shaft. For the filter gain of k = 0.15, the performance of the complementary

filter was found to be comparable to that reported by Microstrain’s proprietary filter and

also demonstrated an ability to track the true angle to within +2 degrees.
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J. FILTER PERFORMANCE WITH RANDOM MOTION

The last chapter ended with a description of the anomalous drift observed in the
Microstrain-computed quaternion. It showed how the angle was prone to drift for a
substantial amount of time (on the order of 20 seconds or more) when the sensor was
subjected to an energetic random motion. In the present section, this motion will be
supplied to our complementary filter so that its performance can be assessed with this
same type of stimulus. When the sensor body was subjected to the arbitrary motion that
resulted in the drifting angle, all of the sensor data (i.e., accelerometers, magnetometers,
and angular rates) were recorded to file. Subsequently, these data were available for

testing with our complementary filter.

Figure 51 compares the manufacturer’s quaternion with that derived from our
complementary filter using k = 0.15 supplied with the sensor data collected from that
experiment. Before the motion, t < 15 sec, the manufacturer’s quaternion and that from
our filter tend to agree. This is the time period when the sensor body is resting
motionless on the workbench. During the motion interval, 15 <t < 20 sec, it is not
possible to make a comparison since we do not have a means of measuring the true
orientation. Therefore, we make no statement about the filter performance during this
interval. However, after the motion stops, and the sensor is returned onto the workbench
in its original orientation, we observe that the components of the quaternion from our
complementary filter tend to settle more quickly to their original values. Figure 52
makes the same comparison in terms of the Euler angles computed from the respective
quaternion. It further illustrates how our complementary filter tends to perform better
than the manufacturer’s quaternion in this situation when the motion is erratic or

changing abruptly.
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Figure 51. Comparison of Microstrain quaternion (blue) and that from our
complementary filter with k = 0.15 (red).
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Figure 52. Comparison of Microstrain Euler angles (blue) and those derived from our
complementary filter with k = 0.15 (red).

Lastly, in Figure 53, we explore the idea of switching the filter gain to an alternate
value based on some criterion that was monitored during the execution of the algorithm.
The figure shows the same data from Figure 52, but it also includes the result of this gain
switching strategy. In this approach, the filter algorithm switched the gain to a large
value, relatively speaking, when the motion was considered low. This had the effect of
weighing the accelerometers and magnetometers more greatly in the complementary filter
output when the acceleration due to non-gravitational motion was low. To accomplish
this adaptive gain strategy, the angular rate was monitored during the program iteration,
and when it was observed to be below a particular threshold, the gain was raised to k = 1.
When the motion was considered to be above the threshold, as established by the angular
rate, the gain was then returned to k = 0.15. The figure shows this result for the period
after t = 15 sec, as this was considered to be the more interesting interval of motion.
After the motion stopped, the angles derived from the adaptive gain approach settled

more quickly than those derived from the constant gain filter. During that period, t > 20
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sec, the sensor was resting on the workbench, which provided an opportunity to use the
accelerometers/magnetometers for the orientation computation. Because the sensor body
was stationary, the accelerometers were not influenced by any motion and their response
was due entirely to the gravity vector. At the end of the motion, however, both

techniques appeared to yield similar results.
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Figure 53. Comparison of results in Figure 51 and the adaptive gain complementary
filter (green).

K. SUMMARY

This chapter presented the complementary filter and discussed its performance in
terms of the gain. A vertical pendulum served as the test case for an evaluation of the
filter’s performance. In closing this chapter, it is noted that the adaptive-gain
complementary filter appears to give slightly better results than the constant-gain filter
without too much added complexity. The next chapter considers the adaptive gain filter

in the personal navigation application. As will be shown, the adaptive gain
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complementary filter is ideally suited to this problem. During the course of natural
human walking, the motion of the foot is observed to be composed of a swing phase and
a stance phase with abrupt starts and stops dividing these periods of motion. It is during
these periods that the complementary filter gain can be adaptively switched to take
advantage of this natural part of normal walking. Thus, during the stance phase, the gain
can be set to some nominally high value to affect full use of the accelerometers (and
magnetometers) for sensing orientation. Similarly, during the swing phase, the gain can
be set to a low value so that the filter will utilize the angular rate sensors as much as
possible to give the attitude estimate.
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IV. PERSONAL NAVIGATION

The previous chapter introduced the complementary filter for use in estimating
the attitude quaternion. It blended a “static” quaternion from the FQA with a “dynamic”
quaternion that came from a differential equation involving the gyro measurements. In
addition to a constant gain, the previous chapter also presented the idea of adaptively
switching the filter gain based on some parameter that is monitored during the execution

of the algorithm.

In this chapter, the complementary filter is applied to the strapdown navigation
algorithm for use in computing one’s position in a PNS application. A foot motion model
is also developed here. It will be used to carry out a simulation study of the PNS
algorithm and to examine some of its other relevant aspects, such as the selection of the
numerical integration method used in the strapdown portion of the algorithm and the
sensor sampling interval. In addition to the simulation, some example results of the PNS

algorithm using actual data will also be included at the end of this chapter.
A.  STRAPDOWN ALGORITHM FOR PERSONAL NAVIGATION

The strapdown navigation algorithm with the zero-velocity updates, the gait-phase
detection algorithm, and our quaternion complementary filter is shown in the block
diagram in Figure 54. The inputs to this algorithm are the IMMU sensor measurements

from the accelerometers, magnetometers, and gyros. A timer value is required, which is
also provided by the IMMU microcontroller. The output of the algorithm is p", a
[3><1] vector of computed position in the navigation frame. Dashed lines from the gait-
phase detection block indicate that this function controls the operation of the zero-
velocity updates and the complementary filter. Recall that the zero-velocity updates were
employed to correct the error that had accumulated in V". This feature was applied when
the foot was known to have a zero velocity during the stance phase. For the
complementary filter, the gait-phase detection algorithm served to indicate the
appropriate times to adaptively switch the filter gain.
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Figure 54. Strapdown navigation algorithm with zero-velocity updates, gait-phase
detection, and quaternion—based complementary filter.

B. ANALYSIS OF NUMERICAL METHODS FOR THE PNS

With a technique in hand for the computation of one’s position using the foot-
mounted IMMU, it might be an appropriate time to test this algorithm with some actual
foot motion data. However, this will be deferred until the end of the chapter. Instead, in
this section we explore the remaining components within the PNS algorithm (see Fig. 54)
that may require some additional examination, namely the integrators. For example,
within the complementary filter, there is an integration operation that results in the need
to solve a first-order differential equation during each iteration of the PNS algorithm.

The differential equation is of the form

q(t)==Q(w)q(t). (4.1)

In Chapter 111, which dealt with the analysis and performance of this filter, this
equation was solved with the numerical method known as Euler’s method. In the
strapdown navigation portion of the PNS, two additional integrators can be found. The

first integrator serves to generate velocity data from the derived samples of navigation
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frame acceleration, while the second integrator provides the desired position updates.
The resulting integral equations have the form as shown.

va)=jaa)m
(4.2)
ﬁ@):jva)dt

Not surprisingly, some numerical integration method must be employed here, as
well. Solution of these integral equations requires numerical methods known as Newton-
Cotes formulas [82]. The idea behind these methods is to approximate the sampled data
with a polynomial that is easy to integrate. Euler’s method considers a zero-order
polynomial and gives a numerical formula—for example, written to compute velocity—

that is of the form

V., =V, +Ata,. (4.3)

This method is easy to implement in code and requires only one data sample. To
improve the accuracy of the result, another popular method for numerical integration is
known as the Trapezoidal Rule. It considers a first-order polynomial as an approximation
for the sampled data and generally yields superior results to Euler’s method. It has the

convenient form
_ _ 1 _ _
Ve, =V, +§At(ak+1 +8,). (4.4)

It requires two data samples, but this is generally not a limitation. Depending on
the underlying nature of the data samples and the requirements for accuracy, higher-order
numerical methods, such as Simpsons 1/3 and 3/8 rules, may be considered for a given
application [83]. In general, the higher-order methods give more accurate results at the
expense of more computational effort. Another factor affecting the accuracy is the size
of the sampling interval, At. This parameter is the interval of time between samples, and

it is often cited in terms of the sampling frequency, f, =1/At. Ordinarily, the accuracy

of the solution improves as At decreases.
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The main objective of this section is to explore the various methods available for
numerical integration with regard to their application in the PNS. Specifically, we are
concerned with the two integrators in the strapdown portion of the PNS, that is, those
dealing with the computation of velocity and position. The reason we will not explore
the integrator residing in the complementary filter is that this performance has already
bees studied in Chapter Ill. A second objective of this section will be to determine a

maximum sampling interval, At.

Before proceeding too much further into the analysis of the integrators, it is
essential to establish a performance benchmark. This is some known quantity or result
that we can use to compare the performance of the various numerical methods that will

be considered, as well as, their sensitivity to the sampling frequency.
1. Benchmark Selection Criteria

A simple benchmark might be to use the actual walking data and try different
numerical methods to see which one gives the minimum distance error. While this may
be the benchmark we return to at the end of this analysis, we prefer to use a carefully
selected acceleration model for the ensuing analysis. This approach has validity for the

following reasons:

1) An acceleration model allows the variation of the sampling frequency, f

either up or down. With actual data, we can only down-sample the data, and only by
fixed amounts (i.e. f,/2, /3, f,/4,...).

2) The analysis can be carried out in the absence of sensor noise and calibration
errors. When appropriate, this parameter can be introduced as desired to study its effect

on the overall performance.

3) An acceleration model, unlike real measured acceleration data, provides a
known and well understood reference for the performance study. This begs the question,
“What is an appropriate model for foot acceleration to use in this analysis?”

To help answer this question, consider the foot acceleration from one of the

navigation frame coordinate axes shown in Figure 55. It is real data derived from the
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foot-mounted IMMU during normal walking motion. Acceleration from approximately
24 steps were superimposed on the plot to show the behavior of the foot motion during
the swing phase. From the moment the toe leaves the ground at the end of the stance
phase, the curve peaks rapidly with some positive acceleration then quickly changes sign
as the foot slows down in preparation for the end of the swing phase when the heel strikes

the ground.

Foot Acceleration - Nav Coordinates
50 T T T T T

Acceleration (m/sz)

-40 | | | |

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (sec)

Figure 55. Typical foot acceleration in navigation coordinates, 24 steps shown.

Integration of this data, using the Trapezoidal rule, for example, gives the velocity
profile shown in Figure 56. Consistent with our intuition, the plot shows how the foot
velocity increases at the beginning of the swing phase, then decreases returning to zero as

it should for the stance phase. It is also noted that these curves have the correction
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introduced by the zero-velocity updates. Lastly, one more integration, again by the
Trapezoidal rule, gives the foot displacement in this particular navigation frame

coordinate axis, as shown in Figure 57.

Foot Velocity - Nav Coordinates
45 T T T T T

Velocity (m/s)

0.5 \ \ \ \ \ \ | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec)

Figure 56. Typical foot velocity in navigation coordinates.
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Foot Position - Nav Coordinates
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Position (m)
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Time (sec)

Figure 57. Typical foot displacement in navigation frame coordinates.

In choosing an acceleration model for our analysis, we desire it to have the
behavior depicted in the previous figures for the real foot motion. That is, for the
acceleration, there should be a period of zero acceleration that corresponds to the stance
phase. There should also be a period of acceleration corresponding to the swing phase.
The swing phase acceleration will have an interval of positive acceleration followed by a
period of negative acceleration. Upon integration of the acceleration model, the result
should appear similar to the curves depicting the foot velocity, as shown in Figure 56. At
the end of the acceleration period, the velocity curve should be zero. Finally, for the
position, we would like to see that the resulting displacement has a shape similar to that

shown in Figure 57.
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2. Linear Acceleration Model

A simple model that was initially considered approximated the swing phase

acceleration with a linear polynomial. This model is given as

L L
at)=-12=t+6—=, 0<t<r (4.5)
T T

where L, is the foot displacement, and z is the duration of the swing phase. This

polynomial is applied to a model of the foot acceleration that is comprised of a period of
zero acceleration representing the stance phase and the linear acceleration during the
swing phase, with another 0.1 seconds of zero acceleration representing the heel strike
event at the end of the foot swing. This is better illustrated in Figure 58 where the

acceleration model includes the linear polynomial a(t) given in Eq. (4.5). The figure also
shows a computed velocity and displacement, both of which were computed using the

Trapezoidal rule. Foot displacement, L., was assumed equal to 180 cm, 7 = 400 msec,

and f,=1000 Hz.

In Table 4, the velocity error (in cm) and the position error (in %) are given for
several sampling frequencies ranging from 20 Hz to 1000 Hz. The velocity error, as
expected, is small due to the fact that the polynomial approximation provided by the
Trapezoidal rule is exact for the case of the linear acceleration model. On the other hand,
the position error that we observe at the end of the swing phase clearly shows a

dependence on f_. A criticism of this simple linear model pertains to the discontinuity

that exists in the acceleration profile at 0.5 sec and 0.9 sec, marking the beginning and
end of the swing phase. Natural human motion can not produce acceleration profiles

having such discontinuities.
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Figure 58. Linear polynomial acceleration model for one step.
Table 4. Position error performance for linear acceleration model and varying
sampling frequency.
f, (H2) T, (sec) Velocity Error Position Error (%)
(cm/sec)
20 0.05 1.705x107* 40.15
50 0.02 0 15.47
100 0.01 7.105%x107% 7.622
200 0.005 —-1.421x107™" 3.781
500 0.002 —2.789x10° " 1.505
1000 0.001 —3.73x107™ 0.7512
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3. Sinusoidal Acceleration Model

Another model that was given ample consideration was that of a sinusoid. Here

the acceleration in the swing phase had the expression
L
a(t) = —Scos(—j, 0<t<r. (4.6)
2 T

Using this expression in the model for the foot acceleration, we get the plot in Figure 59,

again as before, with L = 180 cm, 7 = 400 msec, and f,=1000 Hz. Table 5 shows the

dependence of the error to the sampling frequency using the Trapezoidal rule for
integration. We also see that the velocity error performance is much worse than that for
the linear model. This is due to the fact that our acceleration model is not linear, and the
polynomial approximation provided by the trapezoidal rule is no longer exact. The
acceleration curve still has the discontinuity at the beginning and end of the swing phase.
In experimentation with this model, it was also learned that this feature introduced an
undesirable sensitivity to the distribution of the data samples. Slightly shifting the data
samples forwards or backwards in time caused large swings in the resulting error. For
this reason, as well as the discontinuities in the curve, this model was abandoned and not
considered further in this analysis.
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a(t) cm/s?
o

1000

500 - R

v(t) cm/s

200

100 -

s(t) cm

O | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec)

Figure 59. Sinusoidal acceleration model for one step.

Table 5. Position error performance for sinusoidal acceleration model and varying
sampling frequency.
f, (H2) T, (sec) Velocity Error Position Error (%)
(cm/sec)
20 0.05 277.6 47.56
50 0.02 111 18.71
100 0.01 55.52 9.304
200 0.005 27.76 4.639
500 0.002 111 1.853
1000 0.001 5.552 0.9257
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4. Gaussian Acceleration Model

The Gaussian (normal) function occurs often in the modeling of natural
phenomenon. It was also considered here as a model for the swing phase acceleration. In
our adaptation of this function, the swing phase velocity had the form of the familiar

Gaussian function as shown

1 2 2
Vi) =L, ——e ' _7/ <t<T 4.7
O=L— % % (47)

where o =0.05 was found by trial and error to give a curve that looked like the velocity

profile derived from the actual data, and L, is the stride length. Using v(t)as shown in

Eq. (4.7), the acceleration can be easily derived

AV L et
a(t) = et Gﬂe ( Uzj. (4.8)

Figure 60 shows this expression applied to the foot motion acceleration. Immediately it
can be seen that this model does not have a discontinuity as large as that exhibited by the
models considered previously. However, there is some minor abrupt change at the start
and end of the swing phase due to the fact that the exponential function is not identically
zero at these points. In spite of this, the model does show superior performance as

indicated in Table 6. These results were computed using the Trapezoidal rule.
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Figure 60. Gaussian acceleration model for one step.
Table 6. Position error performance for the Gaussian acceleration model and
varying sampling frequency.
f, (H2) T, (sec) Velocity Error Position Error (%)
(cm/sec)
20 0.05 —2.253x107% -0.04155
50 0.02 6.122 x107® -0.04978
100 0.01 -6.908x107*® -0.07585
200 0.005 8.377x107% -0.09327
500 0.002 —2.419x107" -0.105
1000 0.001 1.793x10°= -0.1092
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Next, we consider the performance of several numerical integration methods. Up
to this point, we have only utilized the Trapezoidal rule for integration. In the following
analysis, we will also employ Euler’s method, Simpson’s 1/3 rule, and an adaptation of
Simpson’s rule and Trapezoidal rule referred to here as modified Simpson’s 1/3 rule. It
works to preserve the sampling interval of the resulting data so that the number of
samples available for a subsequent integration is maintained. These results are shown

qualitatively in the following graphs.

Figure 61 shows the position derived from the double integration of the Gaussian

acceleration model with f ;=100 Hz. The true position, which was derived analytically

using MATLAB’s erfc( ) function, is shown in blue. The symbols in the plot are the
results from the various integration methods considered. Red dots are used to identify the
result using MATLAB’s cumtrapz( ) function, which accomplished the Trapezoidal rule
for integration. The author also implemented his own function for the Trapezoidal rule
titled myTrapz( ). This was done to facilitate its use in other functions used here, such as
Simpson’s 1/3 and the modified Simpson’s 1/3 rules. As evidenced by the plot, the
results from myTrapZ( ) agree with those of MATLAB’s cumtrapz( ), thus validating its
use in the higher-order functions. The plot also shows the results from the double
integration of the Gaussian acceleration model using Simpson’s 1/3 rule, modified
Simpson’s 1/3 rule, and Euler’s method. As the figure suggests, for this sampling
frequency, all methods utilized here gave acceptable results for this particular

acceleration model.
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Figure 61. Double integration of Gaussian acceleration model, f,=100 Hz.

The experiment was repeated using a reduced sampling frequency of f,=50 Hz.

This result is shown in Figure 62. For this sampling frequency, all methods perform well.

Euler’s method begins to degrade, however, during the intermediate portion of the

integration interval, but at the end, its result is consistent with those derived from the

higher-order methods. Lastly, the experiment was repeated one more time, but with

f,=20 Hz. As shown in Figure 63, at the end of the integration period, the Trapezoidal

rule, along with Euler’s method, appears to give better results. Simpson’s 1/3 rule and

the modified Simpson’s rule, on the other hand, appear to have degraded performance for

this sampling frequency. This may be due to the fact that while these higher-order

methods generally yield better results, in this particular case, for the limited number of

samples available, the second-order approximation utilized by these methods may tend to

exacerbate the error.
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Figure 62. Double integration of Gaussian acceleration model, f,=50 Hz.
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Figure 63. Double integration of Gaussian acceleration model, f,=20 Hz.
5. Bezier Polynomial Acceleration Model

One last model we wish to consider is derived from a well known family of
functions known as Bezier polynomials. An attractive feature of these polynomials is
that they can be tailored to suit a particular application. Yet another benefit is that
analytical expressions for integrals and derivatives can be easily derived. Here, the
polynomial chosen has a signature that is representative of the position,

s(t) = L, [%t‘“" Dy +¥t3j, 0<t<r. (4.9)
T T T

The acceleration is easily derived from the second derivative of s(t).
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T

end points of the modeled interval, as demonstrated by the fact that a(0)=a(zr)=0.

Figure 64 shows the foot model acceleration incorporating this particular Bezier

polynomial. Table 7 has the results from the variation of the sampling frequency with the

Trapezoidal rule integration.
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This acceleration model does not have a discontinuity of any kind at the beginning and
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Figure 64. Bezier polynomial acceleration model.
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Table 7. Position error performance for Bezier polynomial acceleration model and
varying sampling frequency.

f, (Hz) T, (sec) Velocity Error (cm/sec) | Position Error (%)
20 0.05 —3.695x107® -10.04
50 0.02 -4.832x107" -1.382
100 0.01 —2.398%x107"® -0.3286
200 0.005 -5.893x10° = -0.08011
500 0.002 —4.569x107% -0.01263
1000 0.001 _5.287x107" -0.003141

Next, we consider the various integration methods using the Bezier polynomial
acceleration model. Figure 65 shows the double integration of the acceleration model
data for f =100 Hz resulting in the foot displacement after one step. The true or
analytical curve is shown in solid blue. As the graph suggests, all of the integration

methods considered in the simulation produced satisfactory results for this sampling
frequency.

The simulation was repeated using a sampling frequency of f =50 Hz, the results

of which are shown in Figure 66. Exhibiting a behavior similar to what was seen using
the Gaussian acceleration model, all methods gave good results for this f,. Euler’s
method had some degraded performance during the intermediate portion of the curve, but
improved at the end of the integration period. Again, this is due to the fact that Euler’s
method is using a zero-order polynomial to approximate this portion of the curve, where
clearly a first-order method would be better. Lastly, when the simulation is repeated
using a f,=20 Hz, as shown in Figure 67, we see that all the methods under consideration
exhibited unsatisfactory performance, reinforcing a main tenet of numerical methods that

in general, higher sampling frequencies yield better results.
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Figure 65. Double integration of Bezier acceleration model, f =100 Hz.
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Figure 66. Double integration of Bezier acceleration model, f =50 Hz.
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Figure 67. Double integration of Bezier acceleration model, f,=20 Hz.
6. Summary of Numerical Methods

To summarize the previous discussion concerning the performance study of the
various numerical methods and the sampling frequency, we learned several things. First,
the acceleration model used in the study does have an impact on the resulting error. As
we observed early on when we experimented with the sinusoidal acceleration model,
large errors had surfaced after double integration. Upon further study, we concluded that
the discontinuous features of our model made the numerical method sensitive to these

errors. Those models that did not have large discontinuities did not exhibit this behavior.

Another aspect of the performance of the numerical methods we considered
pertains to the manner in which the data samples were distributed over the interval of

integration.  Slightly shifting the sample points forwards or backwards in time also
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impacted the resulting error. If the samples were taken at carefully selected points within

the acceleration model, then the error could be reduced to 107*? or less.

Our study also highlighted the dependence on the sampling frequency. As borne
out in many texts on the subject, the higher sampling rate generally produced better
results. Lastly, while our models may not have been best suited to illustrate this point, it
is widely established that the higher-order methods yield improved performance at the

expense of greater computational effort.

In moving forward from this point, we wish to explore the PNS in greater depth
using one of our acceleration models. The purpose now is to learn how the small errors
resulting from the numerical methods evolve when considered in the larger context of the
PNS. Of the various foot acceleration models evaluated, the one that demonstrated the
least sensitivity to the sampling frequency was the Gaussian acceleration model. For this
reason, this model will be advanced for further study in the PNS. Also, of the numerical
methods that were utilized in this study, perhaps the Trapezoidal rule gave the most
consistent results and presented a good compromise between Euler’s method and the
higher-order methods of Simpson’s 1/3 rule in terms of ease of implementation and

computation. Furthermore, we add that for the range of sampling frequencies, f,=50 Hz

seems to be a reasonable value to use. It produced integration results that were rather
accurate without the expense of excessively high sampling frequency and is
representative of that which can be achieved with the real hardware. Furthermore, while
a high sampling frequency may be easy to implement in a computer simulation, it is not

always possible to attain in practice.

C. A THREE-DIMENSIONAL FOOT MOTION MODEL

In this section, the Gaussian foot acceleration model presented earlier is expanded
into three dimensions to generate simulated sensor data from a foot-mounted IMMU.
The resulting sensor data will be used in the performance evaluation of the PNS and the
study of the various aspects affecting its overall operation. For example, in the absence of
any sensor calibration error or noise, the impact of numerical integration over many
walking steps can be examined. Furthermore, when sensor calibration errors and noise
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are ultimately incorporated into the model, an assessment of their effect can be
ascertained, as well. Varying amounts of these variables can be included to gain greater
insight into the sensitivity of the PNS with respect to these parameters. To develop our
foot motion model, our approach is to first generate simulated sensor data of a foot-
mounted IMMU for one step, then propagate this model over as many steps as desired for
use in stimulating the PNS.

In Figure 68, the navigation reference frame along with a body reference frame

attached to the foot center-of-mass is shown. For our motion model, the foot has been
constrained to rotate only about the y"-axis described by the pitch angle . This angle
represents the natural rotation exhibited by the foot as it moves between the swing and

stance phase. Translation or displacement of the foot is confined to the <x” z”>p|ane.

Therefore, in our simulation, the accumulated distance traveled in the horizontal direction
corresponds to magnetic North and coincides with the x"-axis. Our model also has an

acceleration along the z" -axis to represent the vertical movement of the foot, but its net

displacement is zero at the end of each step, as it should during normal walking on level
ground. No acceleration occurs along the y"-axis; thus, the net displacement in the

easterly (or westerly) direction is zero.

Figure 68. Reference frames for the foot motion model.
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The movement of the foot during one step can be decomposed into four distinct
motions. Until now, the motion of the foot was considered only in terms of a stance
phase and a swing phase, but for added realism, the stance phase will be broken down
into three parts. Table 8 shows this new classification of the foot motion. For simplicity,
the total duration for one step is assumed equal to one second. The foot motion model
begins with the foot-flat phase; its duration is 0.4 seconds. In this phase, there is no
angular rotation of the foot here, nor is there any acceleration. The next period of the
model has the toe-off phase, which lasts 0.1 seconds. There is no translational motion
during this phase, but there is a rotation with the heel lifting off the ground in preparation
for the swing phase. Next, there is the swing phase in which the acceleration will be
derived from a Gaussian model, as described shortly. Duration of this phase is 0.4
seconds and has a positive angular rate, as shown in the table. Lastly, the heel-strike
phase occurs at the end of the swing phase. The acceleration here has returned to zero
when the heel of the foot strikes the ground and the foot pitch angle rotates back to zero

to coincide with the beginning of a new foot-flat phase.

Table 8. Component phases of one walking step.
Duration Angular Rate Acceleration
Phase (seconds) 0 (rad/sec) A A
Foot-flat 0.4 0 0 0
Toe-off 0.1 -7.5 0 0
Swing 0.4 +3.5 Gaussian Gaussian
Heel-strike 0.1 -6.5 0 0

To make the sensor data for one step of foot motion, the task is broken down into
four separate parts. First, quaternions are constructed from the foot pitch angle. This
angle is easily derived from the angular rate that has been assumed for each phase of the

foot motion, as shown in the table above. These quaternions have the form
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COS—
2

= _ 411
a= (4.11)
sin—

2

Secondly, after the quaternions have been established for all four phases of the
model, they are then used to rotate the navigation frame acceleration into the body frame,
as shown in Figure 69. Unlike the quaternion rotation operator used in the strapdown
navigation algorithm, the rotation operator used here works with the conjugate

quaternion, q", as shown. A description of the navigation frame acceleration is given in

the next sub-section.

&' ——>@O—> L.@" 3"
s ]
q*
Figure 69. Method to generate body frame acceleration from navigation frame

acceleration.

The third step in this process is to use the pitch angle to construct the

magnetometer measurements. This set of expressions takes on the same form as that
used in Chapter 111 for the pendulum motion simulation, where B, = 0.486 gauss and =

60.483 degrees,

B,|cos(S +6)
m, = 0 (4.12)

mxb =

m, = ‘ée‘sin(ﬁ’ﬂs?)
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The fourth and final step of this process is to construct the gyro measurements.

This is straightforward using the data in Table 8. Since rotation is confined to the y"-
axis, which is coincident with the y®°-axis, only the corresponding gyro measures any

rotation. The gyro measurement designated as @ is equal to @ depending on the

particular phase of the foot motion, and the remaining two gyros do not sense any

rotation, as shown below:

@, = 0
;= 2] (4.13)
@, = 0.

1. Three-Dimensional Acceleration Model

The previous section showed how to construct the sensor body gyro and

magnetometer measurements. To construct the sensor body acceleration measurements,
a’, the method illustrated in Figure 69 must be employed. However, this requires that

first the navigation frame accelerations, a", be established. Fortunately, this is

straightforward because the foot motion in this frame is rather intuitive. As stated

previously, the accelerated motion has been constrained to lie in the <x” z“> plane, with
the foot pitch rotation required to occur along the y"-axis. Furthermore, this leads to the
convenient fact that the (x"z")plane is parallel to the (x"z")plane. Therefore,
accelerations occurring in the <x” z”>plane reside wholly in the <x'° zb>plane, and no
acceleration exists along the y" -axis nor in the y®° -axis.

For the a; acceleration, we note that the velocity in the navigation frame should

have a shape that is similar to the bell-shaped curve in Figure 56. Recall that this was the
computed velocity of the foot in navigation-frame coordinates. For this component of the

velocity, we adopt the Gaussian function, as before,
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V() = — e (4.14)

oN2r

to represent the x" component of velocity during the swing phase. Here the constant o =
0.05 was tailored to give a profile that looked appropriate for our simulation, and L. is the

horizontal displacement after one step. The navigation frame acceleration is derived

from this velocity to give

n d vy (t) L 12252 2
at)=—2>3—"=—2-¢"'7 (-t/o 4.15
== (-t/o?) (4.15)
In (4.15), a, (t) applies to the acceleration during the swing phase only, and is zero for

those times outside of this period. In addition, the time variable was varied as
-0.2<t<+0.2 to compute this acceleration, which had a duration of 0.4 seconds

corresponding to the swing phase.

For our model, we have constrained the acceleration in the <x“ z“>p|ane, o)

a, (t) = 0. Lastly, to form an expression for the vertical acceleration, a; (t) , we recognize

that the net vertical displacement at the end of a step should be zero. With this in mind,

we let the vertical displacement, s; (t) be equal to

M, el
s"(t) = ———e /% 4.16

where -0.2<t<+0.2, o= 0.05, and Ms/a\/Zn equals the maximum vertical

displacement of the foot in the swing phase. The corresponding acceleration is formed

by
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dt? o2 2

o

2 an 2
a? (t) — d SZ (t) — MS e—t2/20'2 {t__l} . (4.17)

This acceleration only applies to the swing phase and is zero outside of this period

of motion. Now that we have a formulation for the navigation frame acceleration, such

that &" =[axn (t) 0 a (t)], it remains a matter of applying the method illustrated in

Figure 69 to generate the body frame acceleration measurements. Equations (4.15) and
(4.17) give the acceleration model for the swing phase. In order to construct an
acceleration model for the entire cycle of one foot step, these expressions must be padded
with zero data before and after the swing phase to be consistent with the assumptions
made in our foot motion model. This completes the last remaining set of measurements

required for the foot motion model.
2. Plots of Three-Dimensional Foot Motion Model

The previous section described how to generate acceleration in the body frame for
our foot-mounted IMMU. In conjunction with the expressions for the magnetometers
and gyros, namely those given in (4.12) and (4.13), we have a complete model for all
nine sensors of a foot-mounted IMMU. The figures in this section show the body frame
measurements produced with this model for one walking step. To generate these plots, a

step duration of one second was assumed with f,= 50 Hz. A horizontal displacement
was assumed equal to L, =180 cm. For the vertical displacement, we chose a value of 25
cm, and solved for the appropriate value of Min (4.16).

Figure 70 shows the magnetometer measurements for one step, which was derived
from (4.12). These equations required the foot pitch angle, @, which in turn was

generated from our model for the foot angular rate, as defined in Table 8. Figure 71 and

Figure 72 show the foot pitch angle and the gyro measurements computed for one
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walking step. The gyro measurements came from (4.13). As was specified for our
model, no foot rotation occurred along either the x”- or the z°-axis. Therefore, only the

o, gyro shows any rotation.
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Figure 70. Magnetometer measurement for foot motion model.
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Figure 71. Foot pitch angle, &, for one walking step.
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Figure 72. Gyro measurements for the foot motion model.

Next, we look at the body frame acceleration measured by the foot-mounted
IMMU in Figure 73. These plots were created using the navigation frame acceleration
model comprised of (4.15) and (4.17), along with the method illustrated in Figure 69.

Because the foot motion was constrained as it was in our model, we only have

accelerated motion in the <xb zb>plane. This completes the body frame model of our

foot-mounted IMMU. Now it is a simple matter to reproduce this model over as many

walking steps as desired to stimulate the PNS with a set of simulated walking data.
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Figure 73. Body frame acceleration for foot motion model.

As a point of interest, we would also like to make a brief examination of the
navigation frame acceleration. Figure 74 provides this acceleration for one walking step
in the navigation frame. Recall that this acceleration was derived from our Gaussian
models for the foot motion. Integration of these data gives the navigation frame velocity,
as shown in Figure 75. The solid line shows the velocity computed from an analytic
expression for the velocity. The red dots inside of the black diamonds are the data points
computed from the trapezoidal rule integration of the accelerometer data with f =50 Hz.
Specifically, the red dots were computed using MATLAB’s cumtrapz( ) function, and the
black diamonds were computed with our own function. These plots indicate good
agreement between the theoretical velocity and that which was computed with the

numerical methods.
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Figure 74. Navigation frame acceleration from Gaussian foot motion models.
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Figure 75. Navigation frame velocity derived from analytical expression (solid),

MATLAB'’s cumtrapz( ) function (red dots), and the author’s myTrapZ( ) function (black
diamonds).

Lastly, the navigation frame velocity is integrated once more to give the three-
dimensional position or displacement. Figure 76 shows this result. The height of the

S, curve is the total horizontal displacement of the foot after one step and equals 179.91
cm, and we had assumed L, = 180 c¢m, giving a position error of 0.05%. Looking at the
S, curve, the maximum vertical displacement computed with the numerical methods can

not be compared with the true maximum vertical displacement because there is no
corresponding data point at this location in the curve. However, at the end of the step, the
net displacement should be zero. We note that the computed value at the end of the step
is 0.176 cm. This suggests that while we have made a good effort to develop a motion
model for our simulation, there is some small error that exists within the model that we

must be cognizant of when applying these data to the PNS simulation.
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Figure 76. Navigation frame position derived from analytical expression (solid),

MATLAB'’s cumtrapz( ) function (red dots), and the author’s myTrapZ( ) function (black
diamonds).

D. NOISE MODEL FOR THE THREE-DIMENSIONAL FOOT MOTION
SIMULATION

In the last section, we developed the three-dimensional model for the foot motion
using the Gaussian function as a foundation for the velocity and displacement curves.
The model gave sensor data from a foot-mounted IMMU in body frame coordinates. In
moving forward from this point, it is desirable to include a random component to this
model that represents the various errors present in any real-world measurement. This
section discusses the work accomplished in this effort to include the effects of calibration

error and random noise.
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1. Sources of Sensor Error

The output of a given sensor is composed of two parts. One component
represents the true value of the physical phenomenon to be quantified—acceleration,
angular rate, or the magnetic flux density. The second component in the sensor output is
an error, which degrades the overall accuracy of the desired measurement. This error can
be further decomposed into two additional parts: a calibration error and a random error.
Calibration error is related to the design and manufacturing tolerances of the sensor.
Random error, on the other hand, arises as a natural consequence of the physical
interactions occurring at the atomic and molecular level of materials within the sensor

systems [84].

Generally, after manufacturing and assembly, a sensor undergoes a calibration
procedure wherein its output is compared against an input reference. The reference input
(or calibration standard) has some specified accuracy that is hopefully traceable to an
accepted standard. Associated with the calibration standard is an uncertainty that,
consequently, can be extended to the sensor undergoing calibration. Typically this
uncertainty is relatively small compared to the input range of the sensor; but it presents a
lower bound on the accuracy that can be achieved by a given sensor. Other contributions
to the calibration error include null-bias error, scale-factor error, and cross-axis coupling
error.  Gyroscope accuracy is further compounded by acceleration-dependent bias
resulting from the inertia of the gyroscope sensing element [10, pp. 72 and 156-159].
The purpose of the calibration is to mitigate these errors. However, the accuracy of the
calibration is influenced by variations in temperature. It also exhibits a random variation

in time, which results in the requirement for periodic recalibration of the sensor.

Random error, or more commonly referred to as noise, limits the overall accuracy
of the sensor calibration. For magnetometers, the noise is electronic in nature and is
generated within the sensing element and its associated electronics. Mechanisms, such as
thermal (Johnson) noise, shot noise, and flicker (1/ f ) noise are the result of physical
processes occurring within the resistive elements and semi-conductor materials of

modern-day electronics [85], [86]. Additionally, MEMS-based sensors are further
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impacted by thermal-mechanical noise, also known as Brownian motion [87], [88]. This
is due to the random interactions between gas molecules surrounding the miniature
mechanical parts of the sensor micro-structures, which are amplified by the sensor

electronics.

Sensor noise is typically characterized by its power spectral density (PSD). For
cases where the noise power is dominated by Johnson noise, shot noise, or Brownian
motion, the PSD appears spectrally flat. On the other hand, flicker noise has a spectrum
that is inversely proportional to frequency and may be the dominant noise process at low
frequency. Dimensional units associated with sensor noise are in terms of the square of

the sensor’s unit of measure with respect to unit bandwidth, such as G?/Hz or G/\/Hz

for an accelerometer.
2. A Model for Sensor Noise

To continue the development of the foot motion sensor model, we need an
appropriate representation for the error existing within each measurement. MATLAB
provides the randn( ) function, which is the random number generator that produces

samples having a Gaussian (normal) distribution. The proposed noise model has the form

u+orandn(:) (4.18)

where u is the mean value of the noise and o is the standard deviation. To test whether

this model is suitable for the generation of sensor noise, it is necessary to compare the
PSD of (4.18) to the PSD of the real noise acquired from the 3DM-GX1.

To that end, a set of measurements were collected from the sensors within the
3DM-GX1.  While the IMMU sat motionless for approximately 1:35 hours,
approximately 297,000 data samples were collected from each of the accelerometers,
magnetometers, and gyros within the unit. For the gyros, this measurement can give

some good insight of the & and o of the noise because these sensors have zero input

while they are sitting motionless on the lab bench. Admittedly, there could be some
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extrinsic rotation or vibration that is present within these measurements, but for these
purposes, they are assumed to be negligible. The static measurements from the
accelerometers and magnetometers can also be used to gain some knowledge of the
sensor noise. However, it must be recognized that these sensors are under the
inescapable influence of gravity and the earth’s magnetic field. Therefore, the

corresponding u for each sensor measurement represents the mean value of these

phenomena, and only the o from these measurements can give insight into the sensor

noise.

In Figure 77, the PSD for one of the accelerometers is shown, which was derived
using the methods in [89].™" The upper plot has the PSD of the sampled data, while the
lower plot shows the PSD created from (4.18) using thex and o derived from the
actual measurement data. Interestingly, these plots have similar spectral qualities
suggesting that MATLAB’s randn( ) function will be suitable for modeling the sensor

noise. Reading the magnitude of the accelerometer noise power from the upper plot

gives an approximate value of —65dBG2/Hz. This value is converted into linear units,
which yields approximately 562 uG/\/Hz . It is a reasonable value when compared with

the stated figure of 400pG/\/Hz given in the specification sheet for the 3DM-GX1.

Lastly, we make an examination of the sample distribution of the measurement data and
our noise model using the histogram plots in Figure 78. Comparison of the upper and

lower plots further reinforces the idea of the use of MATLAB?’s randn( ) function here.

In Figure 79, the noise from the angular rate sensor in considered. The upper plot
shows the PSD for the angular rate sensor measurements under static conditions. The
lower plot shows the PSD for the corresponding noise model. Comparing these plots
indicates that both processes have similar spectral properties. The noise power level is

read directly from these plots giving an approximate value of —57dB(rad/sec)2/Hz.

This figure is converted to an equivalent value of 4.85deg/x/m, which compares

™ The PSD was created using MATLAB’s cpsd( ) function. It is based on Welch’s averaged
modified-periodogram method of spectral estimation. This gives a more accurate representation of the true
PSD rather than the DFT of the sampled data. See MATLAB help on cpsd( ).
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reasonably with the value of 3.5deg / Jhr provided in the manufacturer’s specification

sheet. Lastly, Figure 80 shows the sample distributions for the measurement data and the
noise model data. Comparing these histograms further reinforces the notion that an

expression of the form in (4.18) is suitable for use in our MATLAB foot motion model.

For the magnetometer, similar plots were generated, as shown in Figure 81 and
Figure 82. Making similar comparisons as before suggests that the proposed noise model
is suitable for the magnetometer, as well. It is noted that the manufacturer’s specification
sheet did not include a noise power density figure for the magnetometer; therefore a
comparison with measured data could not be accomplished. The PSD for the measured
magnetometer data shows harmonics at the approximate frequencies of 5 Hz, 9 Hz, 17
Hz, and 23 Hz. While the source of these spectral spikes can not be provided with
certainty, it is surmised that they may be related to a SET/RESET feature within the
magnetometer. This operation requires a periodic pulse of current to be injected through

the magnetometer to ensure reliable operation of the sensor [90].
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Figure 77. PSD of measured accelerometer output (upper plot) and simulated
accelerometer noise model (lower plot).
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Figure 78. Sample distribution for measured accelerometer output (upper plot) and
simulated accelerometer noise model (lower plot).
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Figure 79. PSD of measured gyro output (upper plot) and simulated gyro noise model
(lower plot).
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Figure 80. Sample distribution for measured gyro output (upper plot) and simulated

gyro noise model (lower plot).
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Figure 81. PSD of measured magnetometer output (upper plot) and simulated
magnetometer noise model (lower plot).
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Figure 82. Sample distribution for measured magnetometer output (upper plot) and
simulated magnetometer noise model (lower plot).

E. PNS PERFORMANCE USING THE THREE-DIMENSIONAL FOOT
MOTION MODEL WITH NOISE

Now that a complete three-dimensional model for the foot motion acceleration
has been presented, which also includes a random component to simulate the sensor
error, we can begin the examination of the PNS performance. For convenience, the main
features of the motion model are shown in Table 9. In addition to these features, it is also
noted that the walking motion occurs in a straight line in a northerly direction. A useful
feature of our model is that the number of walking steps may be easily varied as desired,

as well as, ¢ and o for the nine sensors within the IMMU.
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Table 9. Summary of foot motion acceleration model.

Model Gaussian

Stride length 1.2m

Vertical displacement 0.25m

Duration of step 1.0 sec

Duration of swing phase 0.4 sec

Sampling frequency 50 Hz

Accelerometer error 1 =0.1% of full scale

o =0.0325m/s?

Magnetometer error 1 =0.1% of full scale

o =0.8212x10"° Gauss

Gyro error 1 =72x10"°rad/s

o =0.0077rad/s

To begin examination of the PNS performance, first we consider the case where
the walking motion occurs in the absence of any sensor error, as shown in Figure 83. The
simulation presented was for a 100-step straight-line walk in the northerly direction.
Total distance error was 3.33 meters for the 120-meter walk. In spite of the noiseless
sensors used in this simulation, an error of 2.8 % still resulted. The source of this error is
due to a number of reasons. It is well known that the selection of numerical integration
method and sampling interval play a significant role in the resulting error; however, as
was learned from the previous discussion in Section B of this chapter, the particular
choice of the acceleration model and the manner in which the samples are distributed also

play a role in the final error. Therefore, while it may not be readily determined which of
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these factors plays the larger role in the resulting error, it must be acknowledged that
there is some degree of error in the present simulation in which error-free sensors are

considered.
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Figure 83. PNS track of a 100-step straight-line walk in the northerly direction with
no sensor error in the IMMU.

Next, we consider the case where sensor error is included in the foot motion
model. The following figure examines cases where a proportional amount of sensor error
has been included is shown. For these simulations, only a value for o , which was
derived from the measured data for each sensor type, was used, and x was set to zero for
these trials. The plots also show each simulation repeated 50 times to gain some sense of
the statistics of the result. A sensor error scale factor was incorporated to examine the

effects of increased or decreased sensor noise in the PNS algorithm.

158



The results of these simulations are shown in Figure 84. Subplot (a) is the case
where no sensor noise was included, and is the same result as that shown in the previous
figure. Subplots (b), (c) and (d) show the results when the sensor error scaling factor was
set to 0.1, 1, and 10, respectively. Consistent with one’s intuition, as the sensor noise is
increased, there is a corresponding increase in the resulting position error, as can be seen
qualitatively in the figure. The spread of the position error in the East/West direction can
be seen to increase as the sensor error scale factor is increased. Table 10 shows the

pertinent statistics of these simulation results.
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Figure 84. Simulation results for fifty 100-setep straight-line walks, (a) no sensor
error, and sensor error scale factor equal to (b) 0.1, (c) 1, and (d) 10.
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Table 10. PNS error performance due to varying sensor error scale factor.

East/West Error North/South Error
Sensor Error (meters) (meters)
Scale Factor
H o H o
No sensor error 0 3.33
0.1 0.00041 0.0035 1.75 0.011
1 -0.0040 0.041 1.76 0.012
10 -0.094 0.35 1.79 0.05

Referring to the table above, for the East/West error, the standard deviation of this
figure increases in proportion to the sensor error scale factor. For the mean value of the
East/West error, on the other hand, we would expect a result near zero, since that is what
was used for the sensor error. More simulations would be required to verify whether this
is true. Interestingly, the mean value of the North/South error does not seem to depend
on the sensor error scale factor, but it is, however, reduced from the case of no sensor
error. While it is not determined with certainty, this behavior may be attributed to what is
referred to as dithering, wherein noise is intentionally added to a system to achieve an
improved performance [91].

Next, we consider the inclusion of x or sensor bias in the sensor data. For the

gyros, the measured value is used in the simulations. However, since it was not possible

to measure a corresponding « for the accelerometers and magnetometers, a nominal

value will be used in its place that is proportional to the full scale range of each sensor. A
value of 0.1 % of the sensor full scale range is selected. The sensor error scale factor,
which only affects o for each sensor type, is set equal to one. Figure 85 and Table 11
show the results of these simulations. Comparing this figure with the results shown in
Figure 84 indicates that the sensor bias introduces a drift or bias into the PNS-computed

track.
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Figure 85. Simulation results for fifty 100-step straight-line walks with sensor error

scale factor equal to one and (a) accelerometer bias only, (b) gyro bias only, (c)

magnetometer bias only, and (d) all sensor biases included.

Table 11.

varying sensor biases.

PNS error performance with sensor error scale factor equal to one and

Sensor Error East/West Error North/South Error
Scal_e f %ctor (meters) (meters)
o yZi o U o
Accel bias
(0.1% full scale) -2.18 0.036 -1.83 0.012
Gyro bias -0.0006 0.035 -1.75 0.012
(measured)
Mag bias
(0.1% full scale) 1.17 0.044 -1.76 0.012
All sensor biases -0.97 0.036 11.82 0.011
included
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In addition, if one compares Table 11 with the case for sensor error scale factor
equal to one in the pervious table, it is noted that the spread, o, for the East/West error
remains relatively unchanged, however, the mean error has been significantly affected by
the inclusion of the sensor bias. It would not be entirely appropriate to try to assess the
sensitivity of this bias error to the biases introduced into the three sensor types because an
accurate measurement for the accelerometer or magnetometer biases could not be
acquired, and we arbitrarily chose to use a figure of 0.1% of sensor full scale instead. It
is illustrative, nonetheless, the manner in which the sensor error bias impacts the overall
error of the PNS.

In the following plots, the effect of the sensor error on the PNS performance is
considered with respect to the number of walking steps. Figure 86 shows the East/West

error for three different cases: 1) no sensor noise, 2) sensor noise included, but « =0, and
3) sensor noise and x##0. The plot also shows the error (blue diamonds) from three

actual walks, each of approximately 300 steps, around an athletic track. The first two
cases, these are the simulations having zero noise and the other having zero sensor bias,
gave similar error performance. The height of the error bars also is observed to increase
with respect to the number of steps taken, which is indicative of the growth or spread in
the position error with respect to the number of walking steps. This behavior is certainly
consistent with that of inertial navigation systems in general. In the third case, the
simulation included a bias error in the sensors. As noted earlier, the sensor biases
introduce a drift in some particular direction, which is represented in this plot. In fact,
this last simulation result suggests that the PNS performance error may be more sensitive

to these sensor bias errors than to the magnitude of the sensor noise.
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Figure 86. PNS East-West error with respect to number of walking steps.
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Figure 87. PNS North-South error with respect to number of walking steps.

F. PNS PERFORMANCE WITH REAL DATA

Up to this point, we have examined the performance of the PNS algorithm only
with simulated data. We learned how the sensor noise (o) affects the performance of the
PNS, and that the spread of the position error will grow with the number of steps taken.

It was also observed that the sensor bias () will introduce a drift into the computed

position in some direction. It may be further inferred that this quantity may have a more

significant impact on the resulting position error than the sensor noise.

Next, in this section we consider the performance of the PNS using actual walking
data from the foot-mounted IMMU. With the new algorithm available for use in our
PNS, the initial position tracks from Chapter Il may now be revisited. The IMMU data
from those tracks are applied to the PNS algorithm and compared to the previous results.

First, Figure 88 shows the location where many of the walking trials were conducted. It
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is a standard athletic track located at Hartnell Community College in Salinas, California.
The circumference of the inner lane is 400 meters. Lane seven, where the walks were
accomplished, is estimated to be 437.50 meters. All walks were conducted in a counter-
clockwise direction. They began and ended at the same point on the track, as shown in

the image.
1. PNS with Constant Gain

Figure 89 was generated using the complementary filter set to a constant gain.
Three different values were used. Immediately upon inspection of the plot, one sees that
the resulting tracks do not resemble the true oval path. When the filter gain was set to
k =0.15—recall that this value gave a minimum error in the vertical pendulum—the
algorithm does not produce a satisfactory position track. Two other values of gain were
considered, k =0.001and k =0.5. Neither one of these values produced an acceptable
result. In fact, when k =0.001, the computed track drifted off in a direction away from

the true closed path.

Figure 88. Athletic track used for PNS walking trials (From [92]).
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Figure 89. PNS tracks using a constant-gain complementary filter.

2. PNS with Adaptive Gain

Next the PNS is evaluated with an adaptive gain strategy. The filter gain will be
switched between two values according to the gait-phase detection algorithm. When the
foot is in the stance phase, the gain is set to a nominally high value. This is where the
motion-induced accelerations are lower, and the FQA produces better results. During the
swing phase, the foot is moving through the air experiencing rapidly changing
acceleration, and the filter gain is set to a low value such that more of the dynamic

quaternion is represented in the filter output.

Figure 90 shows the computed position for the three walks around the athletic
track. The dashed lines are those that were produced with the proprietary quaternion.
Solid lines represent the tracks computed using our complementary filter with adaptive

gain.  Qualitatively, these tracks represent a marked improvement over those computed
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using the constant-gain filter and those produced with the proprietary quaternion. The
overall shape and orientation of the computed tracks appears very similar to the athletic
track shown in Figure 88.
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Figure 90. Comparison of position track using adaptive-gain complementary filter
(solid) and proprietary algorithm (dashed).

The following tables make a more quantitative comparison of these position
tracks.

Table 12 shows the results for the tracks that were computed using the proprietary
quaternion (dashed lines in Figure 90). The Distance column is the computed distance
traveled for a given walk. Recall that the estimated path length was 437.50 meters.
Using this value, the Distance Error was derived and also included in the table. Another

parameter, AXY , is the computed position at the end of each walk. Since all walks began
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and ended at the same point on the track, this figure represents the radial distance to the
origin. The last column is a position error based on the total distance.

Table 13 has the same information as the previous table, but represents the
performance of the adaptive-gain complementary filter. Comparing the Distance Error
columns from both tables, the adaptive-gain complementary filter has better performance
by almost an order of magnitude. Secondly, the last column of each table, which has the
position error of distance walked, shows that the new filter reduces this error by almost
half.

Table 12. PNS performance using the proprietary algorithm.
Proprietary Algorithm
Distance Distance AXY % Error of Distance
(m) Error (m) Walked
Walk 1 445.95 1.9% 7.73 1.8%
Walk 2 446.72 2.1% 10.53 2.4%
Walk 3 446.15 1.9% 14.25 3.3%
Table 13. PNS Performance using the adaptive-gain complementary filter.
Adaptive-Gain Complementary Filter
Distance Distance AXY % Error of Distance
(m) Error (m) Walked
Walk 1 438.43 0.21% 2.52 0.58%
Walk 2 439.30 0.41% 3.37 0.77%
Walk 3 438.35 0.19% 4.84 1.10%
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G. SELECTION OF THE APPROPRIATE GAIN

The last section showed that the performance of the PNS is greatly improved
when an adaptive gain strategy is utilized. In this approach, two gain values are required,
k.and k,. The former is used when the accelerations are low, as in the foot’s stance
phase, while the latter is used during the foot’s swing phase. To determine the values of
the filter gain that produce the best results, a simple optimization study was

accomplished.
During each iteration of the optimization loop, two filter gain values were
selected, one fork, and one fork,, from a set of possible gains; then the corresponding

position error was computed using the PNS algorithm. Each point spanning the range

k,={0.6...1.6} and k, ={0...0.02} was considered in the optimization. Since the track

started and ended at the origin, then the final position error was simply

5p" =[Pl (t)* + pj(t; )’ (4.19)

where p;(t)is the last value of the computed position in the x"direction, and pJ(t;)is

the last position value in the y"direction. The vertical direction was not considered

because the athletic track was locally flat. Consequently, it was not considered prudent to

include the inaccuracies that may exist in the vertical channel in this study.

Figure 91 shows the result of this optimization study. For each pair of gains,

k,and k,, the computed position error was plotted in the vertical axis of the mesh plot.
The horizontal axes are labeled as k,and k,. The plot shows that a minimum error is
produced when k; =0and k,=1.05. Figure 92 gives a better view of the plot with

respect to k. Itis from here that the value for k, may be estimated more accurately. The
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lowermost curve in this plot corresponds to k, =0and k, ={0.6...1.6}. Inspection of

this curve supports the idea that a value of approximately k, =1.05 gives the minimum

error.

Error

Figure 91. Optimization of the adaptive gain in the complementary filter.

Comparing these values to the result of the pendulum optimization, where we
learned that setting the gain equal to 0.15 gave a minimum pendulum angle error, we see

that for walking motion, setting the filter gain to zero (k, =0) during the swing phase

produces better results. During the swing phase, the foot acceleration is changing very
rapidly, and the accelerometers output is comprised of a larger part that arises from this
motion and a smaller part that comes from the gravity vector. As a result, the FQA gives
large errors at this point in the foot motion. In spite of the gyro biases and its associated
error, the errors occurring in the FQA during the swing phase assumedly dominates that
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which arises from the angular rate sensors. Consequently, setting k, = 0 during the swing

phase here produces better results than the gain value found in the pendulum motion

experiments.

During the stance phase, when the motion-induced accelerations are lower, it is
beneficial to have a larger component of the filter output derived form the FQA. Setting

k, =1.05during this period of the walking motion gives good results. However, as

shown in the plot, a value larger than this is not desirable because the error is seen to
increase. If the foot velocity is zero during this period, then why should the error
increase as more of the FQA quaternion is passed to the filter output? This is possibly
due to the fact that during the stance phase of normal walking, while the foot translational
velocity is zero, its angular velocity is not. In this phase, the foot is rotating from the heel
to the toe in preparation for the next step. If we compare this motion to that of the
pendulum, then the foot will experience some normal and tangential acceleration that will
affect the overall accelerometer output. Thus, the optimization shows that for this phase
of walking motion, it is better to have a blended filter output consisting of both the

dynamic and static quaternions.
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Figure 92.  Selection of k.. Minimum error when k;, =0and k, =1.05.

H. ADDITIONAL COMMENTS ON THE PNS PERFORMANCE

In this section, we want to make some final observations on the PNS
performance. Figure 93 shows an expanded view of the Start/Stop region of Figure 90.
The endpoint for each of the three walks is marked with an ‘X’ in the figure. It is
observed that the endpoints all lie in a region west of the origin. Recalling the impact of

the calibration error () introduced into the foot motion model simulations, it is

surmised that the fashion in which these endpoints arise is also due to some calibration

error or sensor bias existing in the actual IMMU.
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Figure 93. Zoom of Figure 90. PNS-computed endpoints marked with an ‘x’.

In Figure 94, a comparison is made with a track acquired from GPS (shown in
black). No quantitative performance has been provided, but this plot is included here to
give an overall impression of the PNS performance. In addition to the PNS error, there
are two potential sources of error in this plot that must be acknowledged. The first source
of error comes from the fact that the PNS track is computed with respect to magnetic
north, while the GPS track is with respect to true north. In order for a comparison to be
made between the two tracks, the PNS track was rotated by an amount equal to the local
angle of declination, the precision of which can not be easily quantified. A second source
of error comes from the need to convert the latitude/longitude coordinates derived from
GPS into linear distance units of meters. This further requires an estimate of the earth’s
radius, which is on the order of 6367 km and is a potential source of error if not
quantified accurately. In spite of these concerns, the figure illustrates qualitatively that
the results from the PNS algorithm are roughly in agreement with the GPS track.
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Figure 94. Comparison of PNS track (red) with GPS track (black).

Figure 95 shows the Microstrain 3DM-GX1, which has been the primary sensor
used throughout the scope of this project. Also shown in the figure is a smaller version of
an IMMU from MEMSense. The MEMSense nIMU has three sets of orthogonally-
mounted accelerometers, magnetometers, and angular rate sensors. It is approximately
90% smaller by volume than the 3DM-GX1. Data is available to the user through an
inter-integrated circuit (12C) interface at 150 samples per second. Although it does not
compute quaternions for the user, as does the 3DM-GX1, its smaller size makes it

attractive for this application.
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Figure 95. MEMSense nIMU (lower) and Microstrain 3DM-GX1 (upper).

This IMMU was used in several walks around the same athletic track, the results
of which are shown in Figure 96. Two observations are made here. First, the resulting
plots appear to reproduce the actual walking path around the athletic track, thus
reinforcing the utility of the PNS algorithm. A second observation deals with the
sampling frequency. In spite of the higher sampling rate provided by this IMMU, the
results are not necessarily significantly improved—a point borne out in the simulation

study presented earlier in this chapter.
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Figure 96. PNS-computed track using MEMSense IMMU.

One final thought on the PNS performance is given. It deals with the manner in
which the endpoints of the computed tracks all fall in the same region with respect to the
origin. Figure 97 shows an expanded view of the previous figure. As before, the
endpoints are marked with an “x’; similar to the results when the 3DM-GX1 was used, all
three endpoints are clustered in the same area relative to the start/stop point. Recalling
the previous simulations using the foot motion acceleration model, this behavior is quite
likely due to a degree of uncorrected sensor bias or calibration error within the IMMU.
In spite of our best efforts to eliminate these errors with the zero-velocity updates,
evidently, some portion still remains. Furthermore, the figure suggests that a larger

component of the PNS error is derived from the sensor bias than from the random noise.
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Figure 97. Zoom of Figure 96. PNS-computed endpoints marked with an ‘x’.

. SUMMARY

This chapter presented the PNS algorithm and explored its performance through
simulations and with the aid of actual walking data. A foot motion model was developed
specifically for use in these simulations. It was built upon the Gaussian exponential
function. The simulation also included a carefully selected model for the sensor random
error. The parameters of the random error were varied to study their impact on the
overall performance of the PNS. This chapter also examined various techniques for
numerical integration to use in the strapdown portion of the PNS algorithm. The
Trapezoidal rule was found to be adequate for this application and the sampling rate of 50

samples-per-second was considered sufficient for normal walking motion.

A qualitative comparison of the PNS with a constant-gain complementary filter

and the adaptive-gain complementary filter was also provided. It showed that the latter
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approach gave superior performance and created position tracks that were more
representative of the true tracks. In the adaptive-gain complementary filter, the gain was
adaptively switched between two values in accordance with the particular phase of the
gait cycle. An optimization was accomplished using the actual data; it indicated that

using k, =0and k, =1.05 gave the minimum position track error.

This chapter concluded by examining the endpoints of the walking trials around
the athletic track. The manner in which the endpoints all tended to be grouped together
in the same area suggested that there was a component of the sensor error that could not

be negated by the zero-velocity updates.
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V. ALOCOMOTION INTERFACE FOR THE VIRTUAL
ENVIRONMENT

The major theme of this dissertation has been the development of the PNS. The
complementary filter and its integration with the strapdown navigation algorithm has
been the focus of the discussion to this point. It was during the course of this work that
another application for the IMMU came to light. Methods for interaction with virtual
environments are essential to enhance the utility of these computer-generated realities.
This chapter presents a novel locomotion interface based on the IMMU that allows one to

navigate through the virtual environment.

A. BACKGROUND

A virtual reality is a computer-generated environment. Its purpose is to provide
either entertainment or some form of training and education. Another application that has
gained interest in the medical community is for the treatment of post-traumatic stress
disorder in soldiers.

In order for the user of a virtual environment of have a positive and rewarding
experience, he/she must have a high sense of presence. This is the subjective measure of
one’s feeling that he/she really is in the virtual reality. Presence depends on the amount
of immersion offered be the virtual environment. Therefore, immersion is the objective
measure of the amount of sensory stimuli provided by the virtual environment.

To achieve the desired high levels of presence, researchers have worked to
develop immersion devices of various types. These devices are designed to stimulate the
senses and promote a more realistic experience within the virtual environment. The most
common types of user interfaces are those that are found on almost any desktop having a
computer. They are the computer monitor, keyboard, mouse, and speakers. However,
these do little to heighten user presence. More advanced types of interfaces have been
developed. To display graphics to the user, one of two methods has been used. A head
mounted display can be used, which tracks the user’s head motion and renders the display
consistent with the head orientation (see Figure 3). Alternatively, the virtual environment
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can be displayed in a large screen immediately in front of the user, or in other cases, a
multi-projector (display) screen can also be utilized. In this approach, the user is
presented with a scene that fills his/her peripheral vision as much as possible with two or
more large projector screens/displays.

To stimulate the sense of smell while engaged within a virtual environment, the
Army developed a device called the “scent collar.” This device was worn around the
user’s neck and dispensed an odor that was relevant to the location within the virtual
environment [92]. At appropriate times, the “scent collar” released a scent pertinent to
the particular environment to further enhance the user’s sense of presence.

In addition to the use of graphics, sound, and smell to increase the sense of user
presence in a virtual environment, the control of motion is also just as important. Popular
forms of user interfaces for motion control include joysticks and game controllers.
However, as studied in [93] and [94], user presence is increased when his/her motions
through a virtual environment are similar or identical to those required for the same
movement through a real environment. For example, when the user is required to walk or
walk-in-place to simulate virtual walking, this results in a greater sense of presence than
if the user were required to simply move a joystick or strike one of the arrows on the
keyboard to move forward. To this end, other types of motion control devices, or
locomotion interfaces, for virtual environments have been developed. Many are
variations of treadmill designs, assumedly because this required body motions most like
those exhibited in the real world and would most likely result in a high sense of user
presence. Other designs are based on step-in-place devices, where the user steps on pads

located on the floor to direct his/her motion through the environment.

1. Treadmills

Several examples of locomotion interfaces have been constructed that utilize
treadmills. One of the first of this type was developed for the Army by Virtual Space
Devices, Inc., see Figure 98 and [95]. This device was called the Omni-Directional
Treadmill, or ODT. It allowed the user to move in any direction on the treadmill surface,
and through a feedback control mechanism, it maintained the user in a relatively

stationary location. A tracking arm attached to the user measured the user’s position and
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orientation. These data were then passed into the control algorithm to move the treadmill
in the appropriate direction, thus keeping the user fixed in the center of the treadmill
surface. A novel aspect of this approach was that it incorporated two orthogonal
treadmills—one treadmill made up of a number of smaller treadmill belts that were
installed orthogonal to the main one. A variation to this approach comes from Iwata [96]
in what was called the Torus Treadmill. This version of the locomotion interface used
Polhemus position trackers on the user’s knees, so the attachment of a tracking arm to the

user was not required. This was to give the user greater freedom of movement.

Figure 98. Omni-directional treadmill (From [98]).

Another very interesting treadmill approach was developed by [97]. Referred to
as the Ground Surface Simulator (GSS), this design incorporated the results of two
previous projects, the ATLAS [98] and ALF [99]. ATLAS was a treadmill design that
was mounted onto a 3-DOF rotating platform. Infra-red reflectors attached to the user’s
feet were tracked via an infra-red CCD camera. The corresponding foot tracking data
were then used to move the treadmill forward and to rotate the entire treadmill in a

horizontal plane to simulate changes in the walking direction. The ALF was a floor
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design that consisted of an array of movable tiles. When activated, the individual tiles
could be raised or lowered to simulate a varying roughness of terrain.

Yet another use of the treadmill for the locomotion interface was created by
[100]. This design, called the Sarcos Treadport, was unique in that it used a mechanical
tether that was attached to the user to measure position and orientation on the treadmill.
This information was used to control the speed of the treadmill as the user walked and to
rotate the projected virtual environment when the torso was rotated in a particular
direction. The mechanical tether also applied force feedback to the user’s torso. In this
manner the inertial forces one senses during acceleration and deceleration could be

transmitted to the user to enhance the overall sense of presence.

2. Step-In-Place and Gesture Recognition

The use of the treadmill as part of a locomotion interface has been popular
because this device allowed the user to move through the virtual environment in a very
natural way. However, as was acknowledged in many of the references, in its
implementation, a considerable amount of engineering design was required to control the
treadmill speed and further, to determine the direction of motion. Other designs have
been proposed that do not use the treadmill or a treadmill derivative. These consist of
either some type of pad or platform on which the user was required to stand or march in
place. The Walking-Pad, as described in [101], measured 45-cm x 45-cm and consisted
of an array of 64 switches. As the user marched in place on the pad, the corresponding
switches that were activated beneath each foot were used to compute a location for the
center-of-gravity on the pad. The position of the center-of-gravity was then used to
determine a direction of motion through the virtual environment.

The Virtual Perambulator [102] was a design that required the user to wear a pair
of sandals on which a low-friction film had been installed on the sole. The user slid
his/her feet across a special floor pad. Polhemus FASTRACK sensors on each foot were
used to determine the length and direction of steps as the user slid their feet across the
surface. A waist-high stabilizing bar that surrounded the user was utilized for the user to

hold while they moved and to provide a measure of safety.
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In the Step-in-place Turntable [103], the user stood on a 70-cm diameter
motorized platform. Pressure sensors in the platform sensed when the user was stepping
and propelled the user forward in the virtual environment. To determine direction,
infrared markers at the back of the person’s waist were monitored by an infrared camera.
As the user rotated his/her torso, as if to turn, the relative position of the markers in the
camera’s field of view registered this rotation. This information then caused the
motorized platform to rotate in the opposite direction to bring the user back into view of
the large projected screen.

A novel locomotion interface, called CirculaFloor, was developed by [104]. It
utilized a set of automatically positioning floor tiles. As the user began to move from the
center of the floor tile upon which he stood, the underlying control system would
automatically move one of the unused floor tiles into a position to receive the user as they
left the first floor tile. The system used ultra-sonic sensors on the floor tiles to monitor
their position in the active floor space. The user’s position was monitored within the

active area with a laser radar system. See Figure 99.

Figure 99. CirculaFloor designed by Iwata (From [104]).

In [105], a pair of CyberBoots was constructed. Four force sensors were
distributed in the insole of each boot. A fuzzy logic algorithm was then implemented to

classify the user motion as either leaning or walking for interaction with a virtual object.
183



In another locomotion interface known as Gaiter, see [48], the system used pressure-
sensitive foot switches, along with position and orientation tracking sensors attached at
the knees, waist, and head, to move the user through the virtual environment, which was

presented in the head mounted display.

B. SYSTEM DESCRIPTION

At the Naval Postgraduate School, we have developed a locomotion interface for
an existing marksmanship training system. In this training system, the user was required
to stand in front of a large projector screen (approximately 8 ft x 8 ft) onto which was
projected a virtual environment of a fictional urban setting. The user was equipped with
a simulated M-16 rifle that shot rounds of laser pulses. Targets that were projected onto
the screen were then shot at with the M-16 rifle. A camera monitoring the screen
captured the location of the incident laser pulses on the screen for correlation with the
actual target location. The locomotion interface, known as MOVESMover, used two
IMMU devices—one on each foot. Through a series of foot gestures, the user was free to
navigate in a desired direction through the virtual environment. This approach was
appropriate for our marksmanship training system because it allowed the user to maintain
his position and orientation immediately in front of the projector screen. Furthermore, he
could change his direction of walking through the virtual environment without having to
rotate any part of his head or torso and possibly take his eyes away from the simulated
targets.

In the MOVESMover locomotion interface, the user stood in front of a large
projection screen onto which a virtual environment had been displayed. As the user
gestured with his/her feet, the projected scene within the virtual environment changed
accordingly and provided the user with the perception of movement through the virtual
environment. The foot gestures required of the user are shown in Table 14, along with

the corresponding movement that resulted in the virtual environment.
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Table 14. MOVESMover foot gestures.

User Foot Gestures

Motion in VE

No foot motion

Not walking

Marching in place

Walking forward

Left foot step, right foot yaw

Walking turn- forward right

Right foot step, left foot yaw

Walking turn- forward left

Right foot step only

Side step right

Left foot step only

Side step left

Right foot yaw only

Turn in place, clockwise

Left foot yaw only

Turn in place, counter-clockwise

Figure 100 shows the system hardware. The user wore one IMMU on each foot,
such as the Microstrain 3DM-GX1. A Sony UX180P mobile computer, which was
carried by the user in a pouch or backpack, read the sensor data from each foot through a
RS232-t0o-USB interface. The mobile computer executed the custom C++ program
referred to as the MOVESMover application in which it accomplished the following
tasks: 1) read the sensor data from both feet, 2) decoded the foot gestures into one of the
eight motions for the Delta3D virtual environment, and 3) transmitted the commanded
movement via wireless network to the Delta3D PC. The Delta3D PC rendered the virtual

environment according to the movement information that it received from the mobile

computer.
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Figure 100.  System hardware used in MOVESMover.

In order to decode the foot gestures into one of the eight motions for movement
through the virtual environment, a series of state machines were implemented in the
MOVESMover application. These state machines, as shown in Figure 101, worked
together to produce one of the eight possible movements. As an illustration of how these
state machines worked together, the Swing/Stance state machine for the left foot
identified periods of foot swing and foot stance. Then the Motion/~Motion state machine
for the same foot determined whether the foot was in a general state of motion over one
or more cycles of the Swing/Stance state machine. An identical pair of state machines
was created for the right foot. In this manner, it was possible to determine sustained
periods of foot motion for each foot.

If the user gestured in a repeated twisting motion (by an outward rotation of the
ankle so that the foot rotated in a plane parallel to the ground), the Yaw/~Yaw state
machine was triggered. One state machine of this type was created for each foot. These
state machines, along with the Motion/~Motion state machines for both feet, worked
together in what was referred to as the Overall state machine to classify the foot gestures

into one of eight movements through the virtual environment.
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Figure 101.  State machines for the MOVESMover locomotion interface.
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In Figure 102, a portion of the state machine operation in shown. It shows the
angular rate data for three steps of the left foot (Figure 102a). Through experiment, it
was learned that using the foot angular rate instead of acceleration produced more
consistent identification of the periods of foot swing and foot stance. Figure 102b shows
the cycles of the Swing/Stance state machine over the three steps. This state machine
compared the angular rate with a specified threshold, which was also determined
experimentally. If the angular rate exceeded the threshold for a defined period of time,
the state machine switched into the Swing state. Alternatively, if the angular rate fell
below the established threshold for a period of time, the state machine switched to the
Stance state. Subsequently, the Motion/~Motion state machine used the status of the
Swing/Stance state machine to make its determination of sustained foot motion, as
observed in Figure 102c. It accomplished this by considering whether the Swing/Stance
state machine was persistent in the Stance state over an interval of time. Furthermore, if
the Swing/Stance state machine switched to the Swing state, the Motion/~Motion state
machine immediately changed into the Motion state.

The operation of the yaw state machine is shown in Figure 103. It shows the foot
yaw angle data. This parameter was derived from the sensor’s computed orientation (i.e.
quaternion). In Figure 103a, the user was executing a series of quick ankle twists. As
shown, there existed an approximate offset of (-)2.5 radians in this sample of data. It was
in essence the horizontal direction in which the foot sensor was oriented with respect to a
North-East-Down coordinate system when the foot was in the Stance state. On occasion,
this offset was also observed to exhibit a slow wander. It was surmised that this behavior
resulted from the sensor’s orientation algorithm and its difficulty to track the erratic foot
motions. To alleviate this problem, a first-order high-pass filter was used on the foot yaw

data. This filter was implemented as shown below with « =0.9.

Y = a(yk—l + X~ Xk—l) (5.1)
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The resulting filter attenuated all frequencies below approximately 0.5 Hz (Fs =
30 Hz), and Figure 103b shows the filtered foot yaw with the offset removed. This data
was then used in the Yaw/-Yaw state machine. It was compared with a threshold and the
Yaw state was set accordingly, as shown in Figure 103c.

During each program cycle, the Overall state machine used the current status of
the four collaborating state machines to make its determination of the movement through
the virtual environment. The result was then transmitted via a network UDP packet to the
Delta3D PC, which in turn rendered the virtual environment for the user. The transmitted
data consisted of two short data types. The first parameter was an integer value between
0 and 7 that corresponded to one of the motions shown in Table 14. The other parameter
corresponded to a speed to which the user moved through the virtual environment. This
latter parameter was a fixed value, thus it was not computed from the rate of movement
of the user’s foot gestures. Experiment and data analysis to compute a user’s speed
through measurement of the rate of one’s foot gestures failed to yield any good results.
The sample rate of approximately 30 Hz from each sample proved insufficient to achieve

accurate measurements of rates of one’s foot gestures.
C. SUMMARY

We have developed a low-cost locomotion interface for a virtual reality
marksmanship trainer. The MOVESMover locomotion interface required the user to
utilize foot gestures for motion control through the virtual environment. Admittedly, the
ideal locomotion interface would have been one that required the user to walk as in the
real world. However, since this was not possible for our application, a good engineering
compromise was achieved with our approach. In addition to low-cost, the
MOVESMover locomotion interface was easily implemented in that it used commercial
off-the-shelf equipment and only required the development of a custom computer
program to decode the sensor data appropriately. Because the foot-worn sensors were
inertial/magnetic, there was no requirement for the installation of any infrastructure, other
than the wireless network to transmit the data. The MOVESMover locomotion interface

was demonstrated at the MOVES Institute Open House in July 2008. Preliminary trials

190



of the interface indicated that after approximately two or three minutes, users who tried
the locomotion interface became accustomed to the required foot gestures and moved
confidently through the virtual environment.
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V1. CONCLUSION AND RECOMMENDATIONS

This chapter provides final conclusions and summarizes the major contributions
of this dissertation. Recommendations for future work are also given here. The main
theme of this body of work concerned the Personal Navigation System (PNS), which
gave the user a capability of tracking one’s position in GPS-denied environments.
Another component of this effort was the development of a locomotion interface for a
virtual environment. Both of these elements described within this dissertation utilized the

miniature inertial/magnetic measurement unit (IMMU).
A SUMMARY OF CONTRIBUTIONS

The primary accomplishment of this dissertation was the design and development
of the Personal Navigation System (PNS) to track one’s position during normal walking.
In this implementation, a miniature inertial/magnetic measurement unit (IMMU) was
utilized. These devices were based on MEMS technology and were small, lightweight,
low-cost, and low-power. However, they suffered from an added amount of sensor error
that was greater than that found in navigation-grade inertial measurement units designed
for military and commercial applications. Consequently, straightforward use of the
miniature IMMU with the well-known strapdown navigation algorithm in a personal
navigation application would lead to rapidly increasing position error. For this reason, a
new navigation algorithm was designed and tested to mitigate the degraded performance
of the miniature IMMU.

The new PNS algorithm was adapted from the strapdown navigation algorithm
and integrated three additional component algorithms. One of these components was an
error-correction technique known as zero-velocity updates, which was used to negate the
accumulation of error in the computed velocity that had resulted from the integration of
the error in the foot-mounted sensor. Another critical component was the quaternion-
based complementary filter. Designed specifically for the PNS, it employed an adaptive
gain-switching strategy and provided the dynamic foot attitude estimate required for the

strapdown navigation algorithm. Lastly, the gait-phase detection algorithm was also
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incorporated. It identified the instances of the foot stance and swing, which were
required for operation of the complementary filter and the zero-velocity updates.

A significant contribution in support of the PNS development was a measured
improvement in the dynamic performance of the Factored Quaternion Algorithm (FQA)
through its integration in the quaternion-based complementary filter resulting in an
algorithm that facilitated the completion of the PNS. The composite algorithm gave an
intuitive and straightforward method for attitude estimation suitable for applications
beyond those of the PNS application. Testing of the attitude filter was accomplished by
simulation and through the use of an instrumented pendulum built in the laboratory.

The quaternion-based complementary filter incorporated a novel gain-switching
scheme that leveraged the natural features of normal biped walking. This approach was
shown to give improved performance in the PNS over a filter utilizing a constant gain.
Additionally, in support of this contribution a gain optimization was performed using

experimental data to identify the best values for the filter static gain, k., and the dynamic
gain, k, , that resulted in the minimum position error.

The gait-phase detection algorithm identified instances of foot stance and swing
with a demonstrated high degree of accuracy. Furthermore, it signaled the appropriate
times to employ the zero-velocity updates and also indicated when the gain should be
switched within the complementary filter.

This work also described the development of a foot motion model. Based on the
Gaussian exponential function, it provided a means for simulation of the PNS and gave
insight into the performance of the navigation algorithm. The model also included a
component of sensor error, which was validated through experimental measurement and
analysis.

An investigation of the numerical methods suitable for the PNS algorithm was
also accomplished. Through simulation and experiment, the Trapezoidal rule was shown
to give satisfactory results for the strapdown portion of the PNS application, and Euler’s
method was appropriate for the complementary filter. Furthermore, this work also
highlighted the fact that data sampling rates on the order of 50 samples-per-second were

adequate for a PNS utilized in normal walking conditions.
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As an incidental by-product of this effort, a novel utilization for the IMMU was
also developed—a locomotion interface for a virtual environment. As in the PNS
application, it used the shoe-worn IMMU. In this application, however, two IMMUs
were required, one to be worn on each foot. A set of foot gestures were conceived and a
custom software program was developed to decode the user’s foot motions. This unique
interface, referred to here as MOVESMover, gave the user freedom to navigate through
virtual environments utilizing large projection displays in which the user was required to
remain in front of the screen. Specifically, the locomotion interface was designed for a
military marksmanship training system that projected virtual targets onto a large
projection display located immediately in front of the trainee.

B. RECOMMENDATIONS FOR FUTURE WORK

It is noted that the PNS was not without its limitations. Firstly, the PNS was only
demonstrated for normal biped walking. Locomotion by other means (i.e. limping,
skipping, hopping) was not considered in this dissertation, but are topics for further study
and development. Performance of the PNS was initially examined for the case of running
motion. It was found that the data sample rate was insufficient to identify the necessary
features of this type of locomotion and was not considered beyond this point. IMMUs
providing higher sampling rates may be worthwhile avenues for investigation, as well as,
tailoring the gait-phase detection algorithm with additional features to recognize the onset
of running and other forms of biped locomotion.

Another operational limitation of the PNS deals with the walking surface. Only
flat, level walking surfaces were examined, such as, concrete or other types of
manufactured flooring (tile, rubberized asphalt). Walking on softer surfaces, grass for
example, made it difficult for the gait-phase detection algorithm to determine the
principal features of natural walking motion and prevented the other components of the
PNS from operating properly. Further investigation and study is required here to build up
this capability within the gait-phase detection algorithm.

PNS performance in terms of heading accuracy is mainly determined by the
magnetometer.  This sensor, however, is known to be susceptible to magnetic

disturbances arising from hard-iron or soft-iron interference. A thorough examination of
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this performance limitation was not accomplished, but is recommended for future work.
It is suggested that further testing be accomplished in a space where the local magnetic
field can be controlled or quantified so that this type of interference on the PNS
performance can be assessed in greater detail. Furthermore, possible solutions to address
this limitation could come in the form of an additional sensor, such as, a high-end angular
rate sensor (fiber-optic gyro) to measure heading rates-of-change. Yet another approach
could involve an examination of the sudden change in the magnetic field due to some
interference and correlate this to angular rate measurements. It is surmised here that a
true heading change would be sensed by the magnetometers, as well as, some component
of the angular rate sensors. On the other hand, if the magnetometers exhibit some change
in their output due to some anomalous interference, the angular rate sensors being
insensitive to the interference would not give any representation of this and could serve
as an indication of the degraded magnetometer performance. Additional features could
be integrated into the PNS algorithm rooted in these ideas and lead to a more robust
navigation system in regions prone to magnetic interference.

While not a limitation of the PNS algorithm, another source of potential
improvement in the overall system deals with the accuracy of the IMMU. Recalling the
figures showing the computed paths around the athletic tracks, they exhibited the
behavior that the endpoints tended to cluster in the same region with regard to the origin.
Furthermore, it was indicated that this pattern was due to the sensor bias, and in spite of
our best efforts to eliminate these errors with the zero-velocity updates, there was still
some part of the bias error that could not be removed. It is put forward that this
remaining error may be addressed through a rigorous calibration of the IMMU sensors.
A study of accepted calibration procedures is necessary and an understanding of the
complex relationship between sensor calibration accuracy and other factors including
temperature and materials aging, among others is warranted.

Many navigation systems incorporate the Kalman filter to improve the overall
accuracy of the computed position. All of these solutions require the use of an additional
navigational aid, such as GPS, to provide measurements of some or all of the components

of the Kalman filter state vector. Since a main motivation of this work was for
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navigation in GPS-denied environments, the integration of the Kalman filter was not
pursued here. Alternatively, it has been suggested that the zero-velocity updates could be
used in some form to serve as the required navigational aid for the Kalman filter
algorithm. While this idea was not pursued in any detail in this work, it is nonetheless a
very interesting and worthwhile area for further investigation.

The preceding discussion and recommendations were not meant to be
comprehensive. Admittedly, there remains a great deal of additional capabilities required

before a PNS suitable for military application would be available.
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